tf.nn.sigmoid_cross_entropy_with

作者: xyq_learn | 来源:发表于2017-10-09 12:06 被阅读1830次

    tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)

    Docstring:

    Computes sigmoid cross entropy given logits.

    Type: function

    Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.

    sigmoid搭配使用的交叉熵损失函数,输入不需要额外加一层sigmoidtf.nn.sigmoid_cross_entropy_with_logits中会集成有sigmoid并进行了计算优化;它适用于分类的类别之间不是相互排斥的场景,即多个标签(如图片中包含狗和猫)。

    For brevity, let x = logits, z = labels. The logistic loss is

      z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
    = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
    = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
    = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
    = (1 - z) * x + log(1 + exp(-x))
    = x - x * z + log(1 + exp(-x))
    

    For x < 0, to avoid overflow in exp(-x), we reformulate the above

      x - x * z + log(1 + exp(-x))
    = log(exp(x)) - x * z + log(1 + exp(-x))
    = - x * z + log(1 + exp(x))
    

    Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation

    max(x, 0) - x * z + log(1 + exp(-abs(x)))
    

    logits and labels must have the same type and shape.

    Args:

    _sentinel: Used to prevent positional parameters. Internal, do not use.
    labels: A Tensor of the same type and shape as logits.
    logits: A Tensor of type float32 or float64.
    name: A name for the operation (optional).

    Returns:

    A Tensor of the same shape as logits with the componentwise logistic losses.

    Raises:

    ValueError: If logits and labels do not have the same shape.

    相关文章

      网友评论

        本文标题:tf.nn.sigmoid_cross_entropy_with

        本文链接:https://www.haomeiwen.com/subject/xrnuyxtx.html