线
1、同角或等角的余角相等
2、过一点有且只有一条直线和已知直线垂直
3、过两点有且只有一条直线
4、两点之间线段最短
5、同角或等角的补角相等
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
10、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
12、定理1 关于某条直线对称的两个图形是全等形
13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
15、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
2
角
16、同位角相等,两直线平行
17、内错角相等,两直线平行
18、同旁内角互补,两直线平行
19、两直线平行,同位角相等
20、两直线平行,内错角相等
21、两直线平行,同旁内角互补
22、定理1 在角的平分线上的点到这个角的两边的距离相等
23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
24、角的平分线是到角的两边距离相等的所有点的集合
3
25、定理 三角形两边的和大于第三边
26、推论 三角形两边的差小于第三边
27、三角形内角和定理 三角形三个内角的和等于180°
28、推论1 直角三角形的两个锐角互余
29、推论2 三角形的一个外角等于和它不相邻的两个内角的和
30、推论3 三角形的一个外角大于任何一个和它不相邻的内角
31、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方
即a²+b²=c²
32、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形
4
等腰、直角三角形
33、等腰三角形的性质定理 等腰三角形的两个底角相等
34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
35、等腰三角形的顶角平分线、底边上的中线和高互相重合
36、推论3 等边三角形的各角都相等,并且每一个角都等于60°
37、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
38、推论1 三个角都相等的三角形是等边三角形
39、推论 2 有一个角等于60°的等腰三角形是等边三角形
40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
41、直角三角形斜边上的中线等于斜边上的一半
5
相似、全等三角形
42、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
46、判定定理3 三边对应成比例,两三角形相似(SSS)
47、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
49、性质定理2 相似三角形周长的比等于相似比
50、性质定理3 相似三角形面积的比等于相似比的平方
51、边角边公理 有两边和它们的夹角对应相等的两个三角形全等
52、角边角公理 有两角和它们的夹边对应相等的两个三角形全等
53、推论 有两角和其中一角的对边对应相等的两个三角形全等
54、边边边公理 有三边对应相等的两个三角形全等
55、斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等
56、全等三角形的对应边、对应角相等
6月将至,马上就到期末复习的时候了
为了帮助同学们更好地复习
绩加辅导邀请4位名师
开设期末冲刺专题课!
4科2学年共32课时
助力期末,必得高分~
立即关注公众号:绩加辅导 报名课程吧~
网友评论