美文网首页
线程池的原理解析

线程池的原理解析

作者: 辞令 | 来源:发表于2019-04-08 14:06 被阅读0次

线程池的原理

上一篇介绍了为什么要使用线程,以及创建线程的的几种方式。接下来将详细介绍线程的实现原理。

由源码可知,线程池实际上调用的还是ThreadPoolExecutor方法。下面将看一下ThreadPoolExecutor的源代码和注释解析。

 /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize 线程池核心线程数量
     * @param maximumPoolSize 线程池最大线程数量
     * @param keepAliveTime 当活跃线程数大于核心线程数时,空闲的多余线程最大存活时间
     * @param unit. 存活时间的单位
     * @param workQueue 存放任务的队列
     * @param threadFactory 工厂使用执行器时创建一个新线程
     * @param handler 超出线程范围和队列容量的任务的处理程序
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
    }

由源码可知,ThreadPoolExecutor实际上调用的是execute方法。下面将看一下execute的源代码和注释解析。

/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command 要执行的任务
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *  翻译:工作线程数小于核心线程数时,直接新建核心线程执行任务。
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         * 翻译:大于核心线程数时,将任务添加进等待队列。队列满时,创建非核心线程执行任务。
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         * 翻译:工作线程数大于最大线程数时,拒绝任务。
         */
        int c = ctl.get();
         // 工作线程数小于核心线程数时,直接新建核心线程执行任务。
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 当大于核心线程数时,将任务添加进等待队列。队列满时,创建非核心线程执行任务
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
        // 创建线程失败,则采取阻塞处理的方式
            reject(command);
    }

由源码可知,execute实际上调用的是addWorker方法。下面将看一下addWorker的源代码和注释解析。
addWorker的作用:1.才用循环CAS操作来将线程数加1。2. 新建一个线程并启用。

/**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
      //循环CAS操作,将线程池中的线程数+1
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // 仅在必要时检查队列是否为空
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                //core true代表是往核心线程池中增加线程 false代表往最大线程池中增加线程
                //线程数超标,不能再添加了,直接返回
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //CAS修改clt的值+1,在线程池中为将要添加的线程流出空间,成功退出cas循环,失败继续
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                //如果线程池的状态发生了变化回到retry外层循环
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        //新建线程,并加入到线程池workers中
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
            //对workers操作要通过加锁来实现
                final ReentrantLock mainLock = this.mainLock;
               //细化锁的力度,防止临界区过大,浪费资源
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    //判断线程池的状态
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        //判断添加的任务状态,如果已经开始丢出异常
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        //将新建的线程加入到线程池中
                        workers.add(w);
                        int s = workers.size();
                      /largestPoolSize的值
                      if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                //线程添加线程池成功,则开启新线程
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            //线程添加线程池失败或者线程start失败,则需要调用addWorkerFailed函数,
            //如果添加成功则需要移除,并回复clt的值
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

Worker类继承自AbstractQueuedSynchronizer,具有锁的功能,实现Runable接口,具有线程的功能。

/**
     * Class Worker mainly maintains interrupt control state for
     * threads running tasks, along with other minor bookkeeping.
     * This class opportunistically extends AbstractQueuedSynchronizer
     * to simplify acquiring and releasing a lock surrounding each
     * task execution.  This protects against interrupts that are
     * intended to wake up a worker thread waiting for a task from
     * instead interrupting a task being run.  We implement a simple
     * non-reentrant mutual exclusion lock rather than use
     * ReentrantLock because we do not want worker tasks to be able to
     * reacquire the lock when they invoke pool control methods like
     * setCorePoolSize.  Additionally, to suppress interrupts until
     * the thread actually starts running tasks, we initialize lock
     * state to a negative value, and clear it upon start (in
     * runWorker).
     */
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** 线程池中正真运行的线程。通过我们指定的线程工厂创建而来, 如果工厂失败,则为空 */
        final Thread thread;
        /** 线程包装的任务。thread 在run时主要调用了该任务的run方法,要运行的初始任务。可能是零*/
        Runnable firstTask;
        /** 线程任务计数器 */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * 使用线程工厂,创建第一个任务和线程
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            //利用我们指定的线程工厂创建一个线程
            this.thread = getThreadFactory().newThread(this);
        }

        /** 将主运行循环委托给runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // 值0表示解锁状态。
        // 值1表示锁定状态。

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

由源码可知,Worker类的run方法实际上调用的还是ThreadPoolExecutor的runworker方法。下面将看一下ThreadPoolExecutor的runworker源代码和注释解析。

/**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                //线程池处于stop状态或者当前线程被中断时,线程池状态是stop状态。
               //但是当前线程没有中断,则发出中断请求
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                   // 开始执行任务前的Hook
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                       // 任务执行后的Hook,类似回调函数
                        afterExecute(task, thrown);
                    }
                } finally {
                   // 执行完毕后task重置,completedTasks计数器++,解锁
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
           // 线程空闲达到我们设定的值时,Worker退出销毁。
            processWorkerExit(w, completedAbruptly);
        }
    }
 /**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, 如果工作者必须退出,则为null,在这种情况下workerCount将递减
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // 如果线程池处于shutdown状态,
           // 并且队列为空,或者线程池处于stop或者terminate状态,
           // 在线程池数量-1,返回null,回收线程
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);
            //如果allowCoreThreadTimeOut 为ture
            //或者当前线程数量大于核心线程池数目,
            //则需要超时回收
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            //如果线程数目小于最大线程数目,
            //且不允许超时回收或者未超时,
            //则跳出循环,继续去阻塞队列中取任务
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                //如果上面if没有成立,则当前线程数-1,返回null,回收该线程
                //如果上面if没有成立,则CAS修改ctl失败,重读,cas循环重新尝试修改
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
            //如果允许空闲回收,则调用阻塞队列的poll,
            //否则take,一直等到队列中有可取任务
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
            //取到任务,返回任务,
            //否则超时timedOut = true;进入下一个循环,
            //并且在  if ((wc > maximumPoolSize || (timed && timedOut))处会不成立,进而进入到cas修改ctl的程序中
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

相关文章

  • ThreadPoolExecutor线程池原理

    本文参考Java线程池---addWorker方法解析Java线程池ThreadPoolExecutor实现原理线...

  • 线程池ThreadPoolExecutor源码解析

    本文主要内容 什么是线程池 线程池的使用 线程池的原理 线程池中的位运算 源码解析 什么是线程池 如果频繁创建线程...

  • 线程+线程池+使用

    Android 多线程: 完全解析线程池ThreadPool原理&使用https://blog.csdn.net/...

  • Android | 线程池的使用和简单原理

    参考文献: Android 多线程: 完全解析线程池ThreadPool原理&使用 Android开发——Andr...

  • 学习清单

    HTTP原理解析 RxJava使用和原理,并应用到BaseLib库,还有Dragger MVVM 多线程和线程池使...

  • 面试题2019年7月

    线程池原理 参考:Java 线程池原理分析 线程池工作原理:1、线程数量小于 corePoolSize,直接创建新...

  • 线程池解析第一章-源码解析

    线程池解析第一章-源码解析线程池解析第二章-线程池源码问题总结 线程池基本介绍 为什么要使用线程池 对于系统和服务...

  • 线程池解析第二章-线程池源码问题总结

    线程池解析第一章-源码解析线程池解析第二章-线程池源码问题总结 上篇文章分析了关于线程池在源码层面对提交任务的处理...

  • 源码分析AsyncTask的工作原理

    一、AsyncTask原理介绍 AsyncTask的实现原理 = 线程池+ Handler 其中:线程池用于线程调...

  • 线程池原理解析

    1. 什么是线程池? 通俗来讲是就是装有线程的池子,和我们使用到的各种连接池的概念类似,那么线程池解决了什么问题呢...

网友评论

      本文标题:线程池的原理解析

      本文链接:https://www.haomeiwen.com/subject/xvbuiqtx.html