美文网首页
数组索引的时间复杂度 O(1) 的本质是并行二分查找

数组索引的时间复杂度 O(1) 的本质是并行二分查找

作者: display3d | 来源:发表于2022-11-26 22:17 被阅读0次
    2bit寻址逻辑电路.png

    上图是寻址逻辑电路,输入端 A、B 共同组成 2 bit 的地址线,2 bit 的地址线可以表示 00、01、10、11 这 4 个地址,它们分别位于输出端 Z、Y、X、W,通过地址线表示的二进制数就可以找到输出端中的不同地址(以后就可以对其进行读写操作了)

    也可以这样理解:输入端 A、B 相当于两个开关,输出端 Z、Y、X、W 相当于 4 个灯泡,两个开关的不同状态的组合就可以控制其中 1 个灯泡中的亮灭。

    接下来分析单一输入端:

    2bit寻址逻辑电路A.png

    输入端A 为 1 时,会选出输出端X输出端W

    输入端A 为 0 时(经过非门会变成 1),会选出输出端Z输出端Y

    结论:不管输入端A 是 0 还是 1,都会选出一半

    2bit寻址逻辑电路B.png

    输入端B 为 1 时,会选出输出端W输出端Y

    输入端B 为 0 时(经过非门会变成 1),会选出输出端X输出端Z

    结论:不管输入端 B 是 0 还是 1,都会选出一半

    由于只有当与门同时为 1 时,输出端才会输出 1。

    2bit寻址逻辑电路_01.png

    现在,当输入端A输入端B分别为 0、1 时,输出端Y就是输入端A、B 共同选出的地址。

    上图的红线为 1(输入端A 的 0 经过非门会将其之后的线路置为 1)

    那它的时间复杂度是怎么样的呢?

    由于输入端A、输入端B(比如地址 01)是同时输入的,所以电路会进行并行的二分查找,一个输入端的一次二分查找是 O(1),所有的输入端并行,进行一次二分查找同样是 O(1)。

    以上是 2 bit 寻址,更多 bit 的寻址同样是并行进行的,所以时间复杂度同样是 O(1)。

    寻址的物理本质是并行二分查找,而数组索引就是在寻址,所以这就是为什么数组的时间复杂度是 O(1) 的原因。

    下图是 3 bit 寻址逻辑电路

    3bit寻址逻辑电路.png

    可以看到有 3 个输入端、8 个输出端。因为 3 bit 地址线的寻址空间大小是 2^3=8。输入端越多,可以寻找的地址空间也就越大。

    当输入端有 32 bit 时,可以寻找的地址空间有 2^{32}=4294967296 个,它对应的内存空间是 4 GB,这也就是为什么 32 位系统支持的最大内存是 4 GB 的原因了。

    64 位系统的寻址空间大小是 16 EB

    1 EB = 1024 PB

    相关文章

      网友评论

          本文标题:数组索引的时间复杂度 O(1) 的本质是并行二分查找

          本文链接:https://www.haomeiwen.com/subject/xvfhfdtx.html