什么是弦理论
弦理论(以及它的升级版超弦理论)认为所有的亚原子粒子都并非是小点,而是类似于橡皮筋的弦 。与粒子类型的唯一区别在于弦振动的频率差异 。弦理论主要试图解决表面上的不兼容的两个主要物理学理论--量子力学和广义相对论--并欲创造的描述整个宇宙的"万物理论" 。然而这项理论非常难测试,并需要对我们所描绘的宇宙进行一些调整,也即宇宙一定存在比我们所知的四维空间更多的时空维度 。科学家认为这些隐藏的维度可能卷起到非常小以至于我们没有发现它们 。
模型建立
较早时期所建立的粒子学说则是认为所弦理论有物质是由只占一度空间的"点"状粒子所组成,也是目前广为接受的物理模型,也很成功的解释和预测相当多的物理现象和问题,是此理论所根据的"粒子模型"却遇到一些无法解释的问题。比如,在靠近粒子的地方的引力会增加至无限大。比较起来,"弦理论"的基础是"波动模型",因此能够避开前一种理论所遇到的问题。更深的弦理论学说不只是描述"弦"状物体,还包含了点状、薄膜状物体,更高维度的空间,甚至平行宇宙。值得注意的是,弦理论目前尚未能做出可以实验验证的准确预测,关于这一点,以下文会说明。

发展历史
弦理论的雏形是在1968年由Gabriele Veneziano弦理论发现。他原本是要找能描述原子核内的强作用力的数学公式,然后在一本老旧的数学书里找到了有200年之久的欧拉公式(Euler's Function),这公式能够成功的描述他所要求解的强作用力。然而进一步将这公式理解为一小段类似橡皮筋那样可扭曲抖动的有弹性的"线段"却是在不久后由Leonard Susskind(李奥纳特·苏士侃)所发现,这在日后则发展出"弦理论"。

作用模式
虽然弦理论最开始是要解出强相互作用力的作用模式,但是后来的研究则发现了所有的最基本粒子,包含正反夸克,正反电子,正反中微子等等,以及四种基本作用力"粒子"(强、弱作用力粒子,电磁力粒子,以及重力粒子),都是由一小段的不停抖动的能量弦线所构成,而各种粒子彼此之间的差异只是这弦线抖动的方式和形状的不同而已。
超弦理论
另外,"弦理论"这一用词所指的原本包含了26度空间的玻色弦理论,和加入了超对称性的超弦理论。在近日的物理界,"弦理论"一般是专指"超弦理论",而为了方便区分,较早的"玻色弦理论"则以全名称呼。1990年代,爱德华·维顿提出了一个具有11 度空间的M理论,他和其他学者找到强力的证据,证明了当时许多不同版本的超弦理论其实是M理论的不同极限设定条件下的结果,这些发现带动了第二次超弦理论革新。
大一统
弦理论会吸引这么多注意,大部分的原因是因为它很有可能会成为终极理论。目前,描述微观世界的量子力学与描述宏观引力的广义相对论在根本上有冲突,广义相对论的平滑时空与微观下时空剧烈的量子涨落相矛盾,这意味着二者不可能都正确,它们不能完整地描述世界。而除了引力之外,量子力学很自然的成功描述了其他三种基本作用力:电磁力、强力和弱力。弦理论也可能是量子引力的解决方案之一。超弦理论还包含了组成物质的基本粒子之一的费米子。至于弦理论能不能成功的解释基于目前物理界已知的所有作用力和物质所组成的宇宙以及应用到"黑洞"、"宇宙大爆炸"等需要同时用到量子力学与广义相对论的极端情况,这还是未知数。
额外维
额外维是相对于"四维时空"而提出的一个概念,一般泛指的是理论在四维时空基础上扩展出来的其它维度。爱因斯坦提出宇宙是空间加时间组成的"四维时空"。1926年,德国数学物理学家西奥多·卡鲁扎在四维时空上再添加一个空间维,也就是添加一个第五维,把爱因斯坦的相对论方程加以改写,改写后的方程可以把当时已知的两种基本力即"电磁力"和"引力"很自然地统一在同一个方程中。至此,理论中存在额外添加的维度统称为"额外维"。
D-膜
由于超弦理论的时空维数为10维,所以很自然的可以认为有6个额外的维度需要被紧化。当对闭弦紧化时,可以发现所谓的T-对偶;而对开弦紧化则可以发现开弦的端点是停留在这些超曲面上的,并且满足Dirichlet边界条件,所以这些超曲面一般被称为"D膜"。研究员称D膜的动力学为"矩阵理论"(M理论),是为"M"字之一来源。
物理
无法获得实验证明的原因之一是目前尚没有人对弦理论有足够的了解而做出正确的预测,另一个则是目前的高速粒子加速器还不够强大。科学家们使用目前的和正在筹备中的新一代的高速粒子加速器试图寻找超弦理论里主要的超对称性学说所预测的超粒子。
观点
谈话背景
谈到弦论的普及,恐怕没有人能比得上布赖恩·格林。他是哥伦比亚大学的物理学教授,也是弦论研究的一员大将。
他于1999年出版的《优雅的宇宙》(The Elegant Universe)一书在《纽约时报》的畅销书排行榜上名列第四,并入围了普利策奖的最终评选。格林是美国公共电视网Nova系列专辑的主持人,而他近期刚刚完成了一本关于空间和时间本质的书。《科学美国人》的编辑George Musser最近和格林边吃细弦般的意大利面边聊弦论,以下是这次"餐访"的纪要。
评价
SA:有时我们的读者在听到"弦论"或"宇宙论"时,他们会弦理论两手一摊说:"我永远也搞不懂它。"

格林:我的确知道,人们在一开始谈到弦论或者宇宙论时会感到相当的吃力。我和许多人聊过,但我发现他们对于这些概念的基本兴趣是那么的广泛和深刻,因此,比起其他更容易的题材,人们愿意在这方面多花点心思。
SA:我注意到在《优雅的宇宙》一书中,你在很多地方是先扼要介绍物理概念,然后才开始详细论述。
实现突破与否,往往就取决于一点点洞察力
格林:我发现这个法子很管用,尤其是对于那些比较难懂的章节。这样一来读者就可以选择了:如果你只需要简要的说明,这就够了,你可以跳过底下比较难的部分;如果你不满足,你可以继续读下去。我喜欢用多种方式来说明问题,因为我认为,当你遇到抽象的概念时,你需要更多的方式来了解它们。从科学观点来看,如果你死守一条路不放,那么你在研究上的突破能力就会受到影响。我就是这样理解突破性的:大家都从这个方向看问题,而你却从后面看过去。不同的思路往往可以发现全新的东西。
判断
SA:能不能给我们提供一些这种"走后门"的例子?
格林:嗯,最好的例子也许是维顿(Edward Witten)的突破。维顿只是走上山顶往下看,他看到了其他人看不到的那些关联,因而把此前人们认为完全不同的五种弦论统一起来。其实那些东西都是现存的,他只不过是换了一个视角,就"砰"地一下把它们全装进去了。这就是天才。对我而言,这意味着一个基本的发现。从某种意义上说,是宇宙在引导我们走向真理,因为正是这些真理在支配着我们所看到的一切。如果我们受控于我们所看到的东西,那么我们就被引导到同一个方向。因此,实现突破与否,往往就取决于一点点洞察力,无论是真的洞察力还是数学上的洞察力,看是否能够将东西以不同的方式结合起来。
SA: 如果没有天才,你认为我们会有这些发现吗?
格林:嗯,这很难说。就弦论而言,我认为会的,因为里面的谜正在一点一点地变得清晰起来。也许会晚5年或10年,但我认为这些结果还是会出现。不过对于广义相对论,我就不知道了。广义相对论实在是一个大飞跃,是重新思考空间、时间和引力的里程碑。假如没有爱因斯坦,我还真不知道它会在什么时候以什么方式出现。
SA:在弦论研究中,你认为是否存在类似的大飞跃?
格林:我觉得我们还在等待这样一种大飞跃的出现。弦论是由许多小点子汇集而成的,许多人都做出了贡献,这样才慢慢连结成宏大的理论结构。但是,高居这个大厦顶端的究竟是怎么样的概念?我们现在还不得而知。一旦有一天我们真的搞清楚了,我相信它将成为闪耀的灯塔,将照亮整个结构,而且还将解答那些尚未解决的关键问题。
采访
相对论是对时间和空间重新思考的里程碑,我们正在等待另一次这样的飞跃
SA:让我们来谈谈环量子理论与其他一些理论。你总是说弦论是唯一的量子引力论,你现在还这么认为吗?
格林:呃,我认为弦论是目前最有趣的理论。平心而论,近来环量子引力阵营取得了重大的进展。但我还是觉得存在很多非常基本的问题没有得到解答,或者说答案还不能令我满意。但它的确是个可能成功的理论,有那么多极有天赋的人从事这项研究,这是很好的事。我希望,终究我们是在发展同一套理论,只是所采用的角度不同而已,这也是施莫林(Lee Smolin)所鼓吹的。在通往量子力学的路上,我们走我们的,他们走他们的,两条路完全有可能在某个地方相会。因为事实证明,很多他们所长正是我们所短,而我们所长正是他们所短。弦论的一个弱点是所谓的背景依赖(background-dependent)。我们必须假定一个弦赖以运动的时空。也许人们希望从真正的量子引力论的基本方程中能导出这样一个时空。他们(环量子引力研究者)的理论中的确有一种"背景独立"的数学结构,从中可以自然地推导出时空的存在。从另一方面讲,我们(弦论研究者)可以在大尺度的结构上,直接和爱因斯坦广义相对论连接起来。我们可以从方程式看到这一点,而他们要和普通的引力相连接就很困难。这样很自然地,我们希望把两边的长处结合起来。
研究进展
SA:在这方面有什么进展吗?
格林:很缓慢。很少有人同时精通两边的理论。两个体系都太庞大,就算你单在你的理论上花一辈子时间,竭尽你的每一分每一秒,也仍然无法知道这个体系的所有进展。但是现在已经有不少人在沿着这个方向走,思考着这方面的问题,相互间的讨论也已经开始。
SA:如果真的存在这种"背景依赖",那么要如何才能真正深刻地理解时间和空间呢?
格林:嗯,我们可以逐步解决这个难题。比如说,虽然我们还不能脱离背景依赖,我们还是发现了镜像对称性这样的性质,也说是说两种时空可以有相同的一套物理定律。我们还发现了时空的拓扑变化:空间以传统上不可置信的方式演化。我们还发现微观世界中起决定作用的可能是非对易几何,在那里坐标不再是实数,坐标之间的乘积取决于乘操作的顺序。这就是说,我们可以获得许多关于空间的暗示。你会隐约在这时看见一点,那里又看见一点,还有它们底下到底是怎么一回事。但是我认为,如果没有"背景独立"的数学结构,将很难把这些点点滴滴凑成一个整体。
SA:镜像对称性真是太深奥了,它居然把时空几何学和物理定律隔离开来,可过去我们一直认为这二者的联系就是爱因斯坦说的那样。
认识
格林:你说的没错。但是我们并没有把二者完全分割开来。镜像对称只是告诉你遗漏了事情的另一半。几何学和物理定律是紧密相连的,但它就像是一副对折开的地图。我们不应该使用物理定律和几何学这个说法。真正的应该是物理-几何与几何-几何,至于你愿意使用哪一种几何是你自己的事情。有时候使用某一种几何能让你看到更多深入的东西。这里我们又一次看到,可以用不同的方式来看同一个物理系统:两套几何学对应同一套物理定律。对于某些物理和几何系统来说,人们已经发现只使用一种几何学无法回答很多数学上的问题。在引入镜像对称之后,我们突然发现,那些深奥无比的问题一下子变得很简单了。
理论上可以导出许多不同的宇宙,其中我们的宇宙似乎是唯一适合我们生存的
SA:弦论以及一般的现代物理学,似乎逼近一个非如此不可的逻辑结构;理论如此发展是因为再无他路可走。一方面,这与"人择"的方向相反;但是另一方面,理论还是有弹性引导你到"人择"的方向。
格林:这种弹性是否存在还不好说。它可能是我们缺乏全面理解而人为造成的假像。不过以我目前所了解的来推断,弦论确实可以导出许多不同的宇宙。我们的宇宙可能只是其中之一,而且不见得有多么特殊。因此,你说得没错,这与追求一个绝对的、没有商量余地的目标是有矛盾的。
置身于弦宇宙,时空可能像这样:另有6维卷曲在所谓的"卡拉比-丘空间"内。
SA:如果有研究生还在摸索,你如何在方向上引导他们?
格林:嗯,我想大的问题就是我们刚才谈到的那些。我们是否能穷究时间和空间的来源?我们能否搞清楚弦论或M理论的基本思想?我们能否证明这个基本思想能导出一个独特的理论?这个独特理论的独特解,也就是我们所知的这个世界?有没有可能借助天文观测或加速器实验来验证这些思想?甚至,我们能不能回过头来,了解为什么量子力学必然是我们所知世界不可或缺的一部分?任何可能成功的理论在其深层都得依赖一些东西:比如时间、空间、量子力学等,这其中有哪些是真正关键的,有哪些是可以省略掉仍能导出与我们世界相类似的结果?
我们是否生活在11维时空
宇宙学告诉我们,我们肉眼看到的三个空间维数正在膨胀,由此可以推测它们曾经是很小和高度弯曲的。一个自然的可能性是;也许存在与我们观测到的三个空间维数垂直的其它空间维数,这些额外空间维数曾经是但现在仍然是很小和高度弯曲的。如果这些维数的尺度是够小,以我们现有的观测手段仍不是以直接推测到,但是这些维数仍将以许多间接的效应表现出来。
特别地,这是一个强有力的统一观念:在低维中观测到的不同粒子也可能是同一种粒子,在额外维数空间中,它们都是同一粒子不同方向的运动的表现。实际上,额外维数还是弦理论不可分割的一部分:弦理论的数学方程要求空间是9维的,再加上时间维度总共是10维时空。更进一步的研究表明,由M理论给出的更完全的认识揭示了弦理论的第10维空间方向,因此理论的最大维数是11维。最近的一些发展还提出了我们也许生活在低维的膜上面,但是引力仍然是10维的,为了得到现实的3维引力,可以通过引入"影子膜"或者Randall-Sundrum机制。Randall-Sundrum机制是一种束缚引力的新方法,这时,额外维度可以不是很小很小的。通过观测小距离情况下引力对平方反比定律的偏离,或者是在粒子加速上或者是通过超新星爆发中产生的粒子散射进入额外维度因而看起来象消失一样等等奇怪的现象,也许我们现在就有能力探测到这些额外维度。弦理论不仅大大地拓展了人们的思维空间,将大大地拓展人们的活动空间。
网友评论