api
模型的保存是保存为checkpoint文件。summary保存的文件为events文件
import tensorflow as tf
def myregression():
"""
自实现一个线性回归预测
:return: None
"""
with tf.variable_scope("variable"):
#准备数据
x = tf.random_normal([100, 1], mean=1.75, stddev=0.5, name="x_data")
y_true = tf.matmul(x, [[0.7]]) + 0.8 #矩阵相乘必须是2维的
with tf.variable_scope("model"):
#建立线回归模型
weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0, name="weight"))
bias = tf.Variable(0.0, name="bias")
y_predict = tf.matmul(x, weight) + bias
with tf.variable_scope("loss"):
#建立损失函数,均方误差
loss = tf.reduce_mean(tf.square(y_predict-y_true)) #reduce_mean是计算平均值
with tf.variable_scope("optimizer"):
#梯度下降优化损失
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss) #梯度下降去进行优化,即最小化损失,所以后面加了minimize
#1. 收集变量:一般在会话之前
tf.summary.scalar("losses", loss)
tf.summary.histogram("weights", weight)
#2. 合并变量,写入事件文件
#定义合并变量的op
merged = tf.summary.merge_all()
#定义一个初始化变量的op
init_op = tf.global_variables_initializer()
#定义一个保存模型的实例
saver = tf.train.Saver()
#通过会话运行程序
with tf.Session() as sess:
#初始化变量
sess.run(init_op)
#打印随机初始化的权重和偏置值
print("随机初始化的参数权重为:\n", weight.eval(), "\n偏置为:\n", bias.eval())
#运行优化
#循环训练优化
filewriter = tf.summary.FileWriter("./", graph=sess.graph)
for i in range(1000):
sess.run(train_op)
print("优化",i,"次优化过后的参数权重为:", weight.eval(), " 偏置为:", bias.eval())
#运行合并的tensor
summary = sess.run(merged)
#把每次的值写入文件
filewriter.add_summary(summary, i)
if i % 100 == 0:
saver.save(sess, "./model") #model是文件名
return None
import os
def restoremodel():
"""
加载模型
:return:None
"""
with tf.variable_scope("variable"):
x = tf.random_normal([100, 1], mean=1.75, stddev=0.5, name="x_data")
y_true = tf.matmul(x, [[0.7]]) + 0.8 # 矩阵相乘必须是2维的
with tf.variable_scope("model"):
weight = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0, name="weight"))
bias = tf.Variable(0.0, name="bias")
y_predict = tf.matmul(x, weight) + bias
with tf.variable_scope("loss"):
loss = tf.reduce_mean(tf.square(y_predict - y_true)) # reduce_mean是计算平均值
with tf.variable_scope("optimizer"):
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(
loss) # 梯度下降去进行优化,即最小化损失,所以后面加了minimize
# init_op = tf.global_variables_initializer()
"""注意:在恢复模型的时候,就不能再初始化所有变量"""
saver = tf. train.Saver()
with tf.Session() as sess:
if os.path.exists("./checkpoint"):
#加载模型,覆盖之前的参数
saver.restore(sess, "./model") #文件名即可,不需要加后缀。这里的文件名即为model
# sess.run(init_op)
for i in range(500):
# sess.run(train_op)
print("优化",i,"次优化过后的参数权重为:", weight.eval(), " 偏置为:", bias.eval())
return None
if __name__ == "__main__":
# myregression()
restoremodel()
第一次训练后的数据
重新加载后的数据
网友评论