美文网首页R
R语言可视化(二十七):序列logo图绘制

R语言可视化(二十七):序列logo图绘制

作者: Davey1220 | 来源:发表于2020-10-17 20:20 被阅读0次

    27. 序列logo图绘制


    清除当前环境中的变量

    rm(list=ls())
    

    设置工作目录

    setwd("C:/Users/Dell/Desktop/R_Plots/27seqlogo/")
    

    使用seqLogo包绘制序列logo图

    # 安装并加载所需的R包
    #BiocManager::install("seqLogo")
    library(seqLogo)
    
    # 读取示例位置频率矩阵(PWM)数据
    mFile <- system.file("Exfiles/pwm1", package="seqLogo")
    m <- read.table(mFile)
    m
    ##    V1  V2  V3  V4  V5  V6  V7  V8
    ## 1 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0
    ## 2 0.8 0.2 0.8 0.3 0.4 0.2 0.8 0.2
    ## 3 0.2 0.8 0.2 0.4 0.3 0.8 0.2 0.8
    ## 4 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
    
    # 使用makePWM函数转换成PWM矩阵
    pwm <- makePWM(m)
    pwm
    ##     1   2   3   4   5   6   7   8
    ## A 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0
    ## C 0.8 0.2 0.8 0.3 0.4 0.2 0.8 0.2
    ## G 0.2 0.8 0.2 0.4 0.3 0.8 0.2 0.8
    ## T 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
    
    # 使用seqLogo函数绘制序列logo图
    seqLogo(pwm)
    
    image.png

    使用ggseqlogo包绘制序列logo图

    # 安装并加载所需的R包
    #install.packages("ggseqlogo")
    library(ggseqlogo)
    
    # 加载并查看示例数据
    data(ggseqlogo_sample)
    # 查看示例氨基酸序列数据
    length(seqs_aa)
    ## [1] 4
    head(seqs_aa[[1]])
    ## [1] "VVGARRSSWRVVSSI" "GPRSRSRSRDRRRKE" "LLCLRRSSLKAYGNG" "TERPRPNTFIIRCLQ"
    ## [5] "LSRERVFSEDRARFY" "PSTSRRFSPPSSSLQ"
    
    # 查看示例DNA序列数据
    length(seqs_dna)
    ## [1] 12
    head(seqs_dna[[1]])
    ## [1] "CCATATATAG" "CCATATATAG" "CCATAAATAG" "CCATAAATAG" "CCATAAATAG"
    ## [6] "CCATAAATAG"
    
    # 查看示例位置频率矩阵数据
    length(pfms_dna)
    ## [1] 4
    head(pfms_dna[[1]])
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
    ## A    0    0   11    0    1    0    2    8
    ## C    1    1    0    9    0    3    7    0
    ## G    1   10    0    2   10    0    1    1
    ## T    9    0    0    0    0    8    1    2
    
    # 使用ggseqlogo函数绘制序列logo图
    ggseqlogo(seqs_dna[[1]])
    
    image.png
    # 绘制多个序列logo
    ggseqlogo(seqs_dna, facet = "wrap",ncol = 4)
    
    image.png
    # seq_type参数指定序列类型,默认为“auto”自动设别,可以设置为"aa","dna","rna","other"等
    ggseqlogo(seqs_aa, seq_type = "aa")
    
    image.png
    # method参数指定序列展示的方法,默认为“bits”
    ggseqlogo(seqs_dna[1:4], method = "prob")
    
    image.png
    # col_scheme参数设置配色方案
    # 使用list_col_schemes()函数查看内置配色方案
    list_col_schemes(v = T)
    ## Available ggseqlogo color schemes:
    ##  auto
    ##  chemistry
    ##  chemistry2
    ##  hydrophobicity
    ##  nucleotide
    ##  nucleotide2
    ##  base_pairing
    ##  clustalx
    ##  taylor
    
    ggseqlogo(pfms_dna, col_scheme = "clustalx")
    
    image.png
    ggseqlogo(pfms_dna, col_scheme = "base_pairing")
    
    image.png
    # 也可以使用make_col_scheme()函数自定义配色方案
    # 离散型配色方案 Discrete color scheme examples
    cs1 = make_col_scheme(chars=c('A', 'T', 'G', 'C'), groups=c('g1', 'g1', 'g2', 'g2'), 
                          cols=c('red', 'red', 'blue', 'blue'), name='custom1')
    cs1
    ##   letter group  col
    ## 1      A    g1  red
    ## 2      T    g1  red
    ## 3      G    g2 blue
    ## 4      C    g2 blue
    
    # 连续型配色方案 Quantitative color scheme
    cs2 = make_col_scheme(chars=c('A', 'T', 'G', 'C'), values=1:4, 
                          name='custom3')
    cs2
    ##   letter group
    ## 1      A     1
    ## 2      T     2
    ## 3      G     3
    ## 4      C     4
    
    ggseqlogo(pfms_dna, col_scheme = cs1)
    
    image.png
    ggseqlogo(pfms_dna, col_scheme = cs2)
    
    image.png
    # font参数设置logo字体
    # 使用list_fonts()函数查看内置字体
    list_fonts(v = T)
    ## Available ggseqlogo fonts:
    ##  helvetica_regular
    ##  helvetica_bold
    ##  helvetica_light
    ##  roboto_medium
    ##  roboto_bold
    ##  roboto_regular
    ##  akrobat_bold
    ##  akrobat_regular
    ##  roboto_slab_bold
    ##  roboto_slab_regular
    ##  roboto_slab_light
    ##  xkcd_regular
    
    ggseqlogo(seqs_dna[5:8],font="helvetica_bold")
    
    image.png
    ggseqlogo(seqs_dna[5:8],font="roboto_regular")
    
    image.png
    # stack_width参数设置字母的宽度
    ggseqlogo(seqs_dna[5:8],stack_width=0.5)
    
    image.png
    ggseqlogo(seqs_dna[5:8],stack_width=0.9)
    
    image.png

    使用motifStack包绘制序列logo图

    # 安装并加载所需的R包
    #BiocManager::install("motifStack")
    library(motifStack)
    
    # 读取motif文件
    pcm <- read.table(file.path(find.package("motifStack"), 
                                "extdata", "bin_SOLEXA.pcm"))
    head(pcm)
    ##   V1 V2  V3   V4   V5   V6   V7  V8   V9
    ## 1  A  | 462    0 1068 1025 1068   0 1019
    ## 2  C  |  71   60    0   24    0 993    0
    ## 3  G  | 504    0    0    0    0  12    0
    ## 4  T  |  31 1008    0   19    0  63   49
    
    # 生成motif矩阵
    pcm <- pcm[,3:ncol(pcm)]
    rownames(pcm) <- c("A","C","G","T")
    head(pcm)
    ##    V3   V4   V5   V6   V7  V8   V9
    ## A 462    0 1068 1025 1068   0 1019
    ## C  71   60    0   24    0 993    0
    ## G 504    0    0    0    0  12    0
    ## T  31 1008    0   19    0  63   49
    
    motif <- new("pcm", mat=as.matrix(pcm), name="bin_SOLEXA")
    motif
    ## An object of class "pcm"
    ## Slot "mat":
    ##    V3   V4   V5   V6   V7  V8   V9
    ## A 462    0 1068 1025 1068   0 1019
    ## C  71   60    0   24    0 993    0
    ## G 504    0    0    0    0  12    0
    ## T  31 1008    0   19    0  63   49
    ## 
    ## Slot "name":
    ## [1] "bin_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25
    
    # 生成motif logo图形
    plot(motif)
    
    image.png
    #plot the logo with same height
    plot(motif, ic.scale=FALSE, ylab="probability")
    
    image.png
    #try a different font and a different color group
    motif@color <- colorset(colorScheme='basepairing')
    plot(motif,font="Times")
    
    image.png
    # plot an affinity logo
    # 绘制双链关联序列logo图
    motif<-matrix(
      c(
        .846, .631, .593, .000, .000, .000, .434, .410, 1.00, .655, .284, .000, .000, .771, .640, .961,
        .625, .679, .773, 1.00, 1.00, .000, .573, .238, .397, 1.00, 1.00, .000, .298, 1.00, 1.00, .996,
        1.00, 1.00, 1.00, .228, .000, 1.00, 1.00, .597, .622, .630, .000, 1.00, 1.00, .871, .617, 1.00,
        .701, .513, .658, .000, .000, .247, .542, 1.00, .718, .686, .000, .000, .000, .595, .437, .970
      ), nrow=4, byrow = TRUE)
    rownames(motif) <- c("A", "C", "G", "T")
    motif<-new("psam", mat=motif, name="affinity logo")
    motif
    ## An object of class "psam"
    ## Slot "mat":
    ##    [,1]  [,2]  [,3]  [,4] [,5]  [,6]  [,7]  [,8]  [,9] [,10] [,11] [,12]
    ## A 0.846 0.631 0.593 0.000    0 0.000 0.434 0.410 1.000 0.655 0.284     0
    ## C 0.625 0.679 0.773 1.000    1 0.000 0.573 0.238 0.397 1.000 1.000     0
    ## G 1.000 1.000 1.000 0.228    0 1.000 1.000 0.597 0.622 0.630 0.000     1
    ## T 0.701 0.513 0.658 0.000    0 0.247 0.542 1.000 0.718 0.686 0.000     0
    ##   [,13] [,14] [,15] [,16]
    ## A 0.000 0.771 0.640 0.961
    ## C 0.298 1.000 1.000 0.996
    ## G 1.000 0.871 0.617 1.000
    ## T 0.000 0.595 0.437 0.970
    ## 
    ## Slot "name":
    ## [1] "affinity logo"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001"
    
    plot(motif)
    
    image.png
    # plot sequence logo stack
    # 导入多个序列矩阵
    motifs<-importMatrix(dir(file.path(find.package("motifStack"), "extdata"),"pcm$", full.names = TRUE))
    motifs
    ## $bin_SOLEXA
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7]
    ## A  462    0 1068 1025 1068    0 1019
    ## C   71   60    0   24    0  993    0
    ## G  504    0    0    0    0   12    0
    ## T   31 1008    0   19    0   63   49
    ## 
    ## Slot "name":
    ## [1] "bin_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## $fd64A_SOLEXA
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7]
    ## A    0   47    0    0    0  347   15
    ## C    0    0    0    0    0    0  208
    ## G    0  504    0    5   61   98  112
    ## T  551    0  551  546  490  106  216
    ## 
    ## Slot "name":
    ## [1] "fd64A_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## $fkh_NAR
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
    ## A    3    5    0    0    0   13    4    6    0    23    15
    ## C    0    0    0    0    0    0   13    7   11     0     4
    ## G    0   22    0    0    1   14    2    3    2     1     4
    ## T   24    0   27   27   26    0    8   11   14     3     4
    ## 
    ## Slot "name":
    ## [1] "fkh_NAR"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## $foxo_SOLEXA
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7]
    ## A    0  122    0    0  107  978    8
    ## C    0   16    0    0    0    0  834
    ## G    0 1443    2    5   96  163  191
    ## T 1581    0 1579 1576 1378  440  516
    ## 
    ## Slot "name":
    ## [1] "foxo_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## $FoxP_SOLEXA
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
    ## A  380   52 1158 1178 1202    0 1191  651
    ## C   83  184   44   24    0 1057    0  151
    ## G  652    1    0    0    0    0    1  154
    ## T    5  958    0    0    0  145    0  209
    ## 
    ## Slot "name":
    ## [1] "FoxP_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## $slp1_SOLEXA
    ## An object of class "pcm"
    ## Slot "mat":
    ##   [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
    ## A  844  290  641  351 1747 1832 1851    0 1842
    ## C  361  642  432  302  104   19    0 1710    9
    ## G  482  277  745    7    0    0    0   14    0
    ## T  158  642   33 1191    0    0    0  127    0
    ## 
    ## Slot "name":
    ## [1] "slp1_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ...
    
    ## plot stacks
    # 绘制多序列堆叠logo图
    motifStack(motifs, layout="stack", ncex=1.0)
    
    image.png
    ## plot stacks with hierarchical tree
    # 添加进化树(layout="tree")
    motifStack(motifs, layout="tree")
    
    image.png
    ## When the number of motifs is too much to be shown in a vertical stack, 
    ## motifStack can draw them in a radial style.
    ## random sample from MotifDb
    #BiocManager::install("MotifDb")
    library("MotifDb")
    matrix.fly <- query(MotifDb, "Dmelanogaster")
    motifs2 <- as.list(matrix.fly)
    ## use data from FlyFactorSurvey
    motifs2 <- motifs2[grepl("Dmelanogaster\\-FlyFactorSurvey\\-",
                             names(motifs2))]
    ## format the names
    names(motifs2) <- gsub("Dmelanogaster_FlyFactorSurvey_", "",
                           gsub("_FBgn\\d+$", "",
                                gsub("[^a-zA-Z0-9]","_",
                                     gsub("(_\\d+)+$", "", names(motifs2)))))
    motifs2 <- motifs2[unique(names(motifs2))]
    pfms <- sample(motifs2, 50)
    ## creat a list of object of pfm 
    motifs2 <- lapply(names(pfms), 
                      function(.ele, pfms){new("pfm",mat=pfms[[.ele]], name=.ele)}
                      ,pfms)
    ## trim the motifs
    motifs2 <- lapply(motifs2, trimMotif, t=0.4)
    motifs2
    ## [[1]]
    ## An object of class "pfm"
    ## Slot "mat":
    ##            3         4 5 6   7   8
    ## A 0.23333333 0.4333333 1 0 0.0 0.5
    ## C 0.03333333 0.0000000 0 0 0.0 0.0
    ## G 0.00000000 0.0000000 0 0 0.2 0.5
    ## T 0.73333333 0.5666667 0 1 0.8 0.0
    ## 
    ## Slot "name":
    ## [1] "CG4328_Cell"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## [[2]]
    ## An object of class "pfm"
    ## Slot "mat":
    ##           1 2         3 4 5         6 7         8
    ## A 0.1111111 0 0.2222222 1 1 0.2222222 0 0.8888889
    ## C 0.0000000 0 0.0000000 0 0 0.2222222 0 0.1111111
    ## G 0.8888889 0 0.7777778 0 0 0.2222222 1 0.0000000
    ## T 0.0000000 1 0.0000000 0 0 0.3333333 0 0.0000000
    ## 
    ## Slot "name":
    ## [1] "CG7386_F10_12_SANGER_5"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## [[3]]
    ## An object of class "pfm"
    ## Slot "mat":
    ##             2          3 4 5          6          7
    ## A 0.012944984 0.98705502 1 0 0.01618123 0.58899676
    ## C 0.006472492 0.01294498 0 0 0.00000000 0.02265372
    ## G 0.000000000 0.00000000 0 0 0.04854369 0.34951456
    ## T 0.980582524 0.00000000 0 1 0.93527508 0.03883495
    ## 
    ## Slot "name":
    ## [1] "CG9876_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## [[4]]
    ## An object of class "pfm"
    ## Slot "mat":
    ##            2          3          4          5          6          7
    ## A 0.09137056 0.69035533 0.90609137 0.00000000 0.03045685 0.67005076
    ## C 0.01269036 0.09644670 0.09390863 0.00000000 0.01776650 0.06598985
    ## G 0.01776650 0.19289340 0.00000000 0.03045685 0.14720812 0.23857868
    ## T 0.87817259 0.02030457 0.00000000 0.96954315 0.80456853 0.02538071
    ## 
    ## Slot "name":
    ## [1] "Lim3_SOLEXA"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ## 
    ## 
    ## [[5]]
    ## An object of class "pfm"
    ## Slot "mat":
    ##           2          3 4 5 6         7         8
    ## A 0.1052632 0.05263158 1 1 0 0.0000000 0.8421053
    ## C 0.5263158 0.00000000 0 0 0 0.0000000 0.0000000
    ## G 0.0000000 0.00000000 0 0 0 0.3157895 0.1578947
    ## T 0.3684211 0.94736842 0 0 1 0.6842105 0.0000000
    ## 
    ## Slot "name":
    ## [1] "Ap_Cell"
    ## 
    ## Slot "alphabet":
    ## [1] "DNA"
    ## 
    ## Slot "color":
    ##         A         C         G         T 
    ## "#00811B" "#2000C7" "#FFB32C" "#D00001" 
    ## 
    ## Slot "background":
    ##    A    C    G    T 
    ## 0.25 0.25 0.25 0.25 
    ...
    
    ## setting colors
    library(RColorBrewer)
    color <- brewer.pal(12, "Set3")
    color
    ##  [1] "#8DD3C7" "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3" "#FDB462" "#B3DE69"
    ##  [8] "#FCCDE5" "#D9D9D9" "#BC80BD" "#CCEBC5" "#FFED6F"
    
    ## plot logo stack with radial style
    # 设置环形多序列logo图(layout="radialPhylog")
    motifStack(motifs2, layout="radialPhylog", 
               circle=0.3, cleaves = 0.2, 
               clabel.leaves = 0.5, 
               col.bg=rep(color, each=5), col.bg.alpha=0.3, 
               col.leaves=rep(color, each=5),
               col.inner.label.circle=rep(color, each=5), 
               inner.label.circle.width=0.05,
               col.outer.label.circle=rep(color, each=5), 
               outer.label.circle.width=0.02, 
               circle.motif=1.2,
               angle=350)
    
    image.png
    sessionInfo()
    ## R version 3.6.0 (2019-04-26)
    ## Platform: x86_64-w64-mingw32/x64 (64-bit)
    ## Running under: Windows 10 x64 (build 18363)
    ## 
    ## Matrix products: default
    ## 
    ## locale:
    ## [1] LC_COLLATE=Chinese (Simplified)_China.936 
    ## [2] LC_CTYPE=Chinese (Simplified)_China.936   
    ## [3] LC_MONETARY=Chinese (Simplified)_China.936
    ## [4] LC_NUMERIC=C                              
    ## [5] LC_TIME=Chinese (Simplified)_China.936    
    ## 
    ## attached base packages:
    ##  [1] stats4    parallel  grid      stats     graphics  grDevices utils    
    ##  [8] datasets  methods   base     
    ## 
    ## other attached packages:
    ##  [1] RColorBrewer_1.1-2  MotifDb_1.26.0      motifStack_1.28.0  
    ##  [4] Biostrings_2.52.0   XVector_0.24.0      IRanges_2.18.1     
    ##  [7] S4Vectors_0.22.0    ade4_1.7-13         MotIV_1.40.0       
    ## [10] BiocGenerics_0.30.0 grImport2_0.2-0     ggseqlogo_0.1      
    ## [13] seqLogo_1.50.0     
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] Rcpp_1.0.5                  lattice_0.20-38            
    ##  [3] png_0.1-7                   Rsamtools_2.0.0            
    ##  [5] assertthat_0.2.1            digest_0.6.20              
    ##  [7] R6_2.4.0                    GenomeInfoDb_1.20.0        
    ##  [9] evaluate_0.14               ggplot2_3.2.0              
    ## [11] pillar_1.4.2                zlibbioc_1.30.0            
    ## [13] rlang_0.4.7                 lazyeval_0.2.2             
    ## [15] data.table_1.12.2           Matrix_1.2-17              
    ## [17] rmarkdown_1.13              labeling_0.3               
    ## [19] BiocParallel_1.17.18        stringr_1.4.0              
    ## [21] htmlwidgets_1.3             RCurl_1.95-4.12            
    ## [23] munsell_0.5.0               DelayedArray_0.10.0        
    ## [25] compiler_3.6.0              rtracklayer_1.44.0         
    ## [27] xfun_0.8                    pkgconfig_2.0.2            
    ## [29] base64enc_0.1-3             htmltools_0.3.6            
    ## [31] tidyselect_0.2.5            SummarizedExperiment_1.14.0
    ## [33] tibble_2.1.3                GenomeInfoDbData_1.2.1     
    ## [35] matrixStats_0.54.0          XML_3.98-1.20              
    ## [37] crayon_1.3.4                dplyr_0.8.3                
    ## [39] GenomicAlignments_1.20.1    MASS_7.3-51.4              
    ## [41] bitops_1.0-6                gtable_0.3.0               
    ## [43] magrittr_1.5                scales_1.0.0               
    ## [45] stringi_1.4.3               splitstackshape_1.4.8      
    ## [47] rGADEM_2.32.0               tools_3.6.0                
    ## [49] BSgenome_1.52.0             Biobase_2.44.0             
    ## [51] glue_1.3.1                  purrr_0.3.2                
    ## [53] jpeg_0.1-8.1                yaml_2.2.0                 
    ## [55] colorspace_1.4-1            GenomicRanges_1.36.0       
    ## [57] knitr_1.23
    

    相关文章

      网友评论

        本文标题:R语言可视化(二十七):序列logo图绘制

        本文链接:https://www.haomeiwen.com/subject/ycpfmktx.html