美文网首页RRNA-seqR
自己构建物种包OrgDb,然后用clusterProfiler富

自己构建物种包OrgDb,然后用clusterProfiler富

作者: 生信小白2018 | 来源:发表于2019-09-25 10:01 被阅读0次

    利用clusterProfiler进行富集分析时,发现网上没有物种包OrgDb,利用网上教程构建了一个。主要参考了刘小泽的简书,特别感谢一下!!!

    emapper首先得到注释文件,前提是自己安装好eggnog-mapper并且下载好相应的数据库

    emapper.py --cpu 20 -i filter.pep.fa_16 --output filter.pep.fa_16.out -d virNOG  -m diamond
    
    or
    
    emapper.py -m diamond \
               -i sesame.fa \
               -o diamond \
               --cpu 19
    

    得到注释文件后进行处理,只保留表头query_name这一行的注释信息,去掉头尾的# 等信息

    sed -i '/^# /d' diamond.emapper.annotations 
    sed -i 's/#//' diamond.emapper.annotations
    
    

    开始一定要加上options(stringsAsFactors = F),否则所有的字符在数据框中都会被R默认设置为factor!!!

    library(clusterProfiler)
    library(dplyr)
    library(stringr)
    options(stringsAsFactors = F)
    #hub <- AnnotationHub::AnnotationHub()
    #query(hub,"Theobroma cacao")
    
    #STEP1:自己构建的话,首先
    
    需要读入文件
    setwd("G:/xxx")
    egg_f <- "xx_annotations1"
    egg <- read.table(egg_f, header=TRUE, sep = "\t")
    
    #egg_f <- "test111"
    #egg <- read.table(egg_f, header=TRUE, sep = "\t")
    #gene_info_new<-read.table("id.txt" , header=TRUE, sep = "\t")
    
    egg[egg==""]<-NA #这个代码来自花花的指导(将空行变成NA,方便下面的去除)
    
    #STEP2: 从文件中挑出基因query_name与eggnog注释信息
    gene_info <- egg %>% 
      dplyr::select(GID = query_name, GENENAME = eggNOG_annot) %>% na.omit()
    
    #STEP3-1:挑出query_name与GO注释信息
    gterms <- egg %>%
      dplyr::select(query_name, GO_terms) %>% na.omit()
    
    #STEP3-2:我们想得到query_name与GO号的对应信息
    # 先构建一个空的数据框(弄好大体的架构,表示其中要有GID =》query_name,GO =》GO号, EVIDENCE =》默认IDA)
    # 关于IEA:就是一个标准,除了这个标准以外还有许多。IEA就是表示我们的注释是自动注释,无需人工检查http://wiki.geneontology.org/index.php/Inferred_from_Electronic_Annotation_(IEA)
    # 两种情况下需要用IEA:1. manually constructed mappings between external classification systems and GO terms; 2.automatic transfer of annotation to orthologous gene products.
    gene2go <- data.frame(GID = character(),
                          GO = character(),
                          EVIDENCE = character())
    
    # 然后向其中填充:注意到有的query_name对应多个GO,因此我们以GO号为标准,每一行只能有一个GO号,但query_name和Evidence可以重复
    for (row in 1:nrow(gterms)) {
      gene_terms <- str_split(gterms[row,"GO_terms"], ",", simplify = FALSE)[[1]]  
      gene_id <- gterms[row, "query_name"][[1]]
      tmp <- data_frame(GID = rep(gene_id, length(gene_terms)),
                        GO = gene_terms,
                        EVIDENCE = rep("IEA", length(gene_terms)))
      gene2go <- rbind(gene2go, tmp)
    } 
    
    #STEP4-1: 挑出query_name与KEGG注释信息
    gene2ko <- egg %>%
      dplyr::select(GID = query_name, KO = KEGG_KOs) %>%
      na.omit()
    
    #STEP4-2: 得到pathway2name, ko2pathway
    # 需要下载 json文件(这是是经常更新的)
    # https://www.genome.jp/kegg-bin/get_htext?ko00001
    # 代码来自:http://www.genek.tv/course/225/task/4861/show
    
    if(F){
      # 需要下载 json文件(这是是经常更新的)
      # https://www.genome.jp/kegg-bin/get_htext?ko00001
      # 代码来自:http://www.genek.tv/course/225/task/4861/show
      library(jsonlite)
      library(purrr)
      library(RCurl)
    
      update_kegg <- function(json = "ko00001.json") {
        pathway2name <- tibble(Pathway = character(), Name = character())
        ko2pathway <- tibble(Ko = character(), Pathway = character())
    
        kegg <- fromJSON(json)
    
        for (a in seq_along(kegg[["children"]][["children"]])) {
          A <- kegg[["children"]][["name"]][[a]]
    
          for (b in seq_along(kegg[["children"]][["children"]][[a]][["children"]])) {
            B <- kegg[["children"]][["children"]][[a]][["name"]][[b]] 
    
            for (c in seq_along(kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]])) {
              pathway_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["name"]][[c]]
    
              pathway_id <- str_match(pathway_info, "ko[0-9]{5}")[1]
              pathway_name <- str_replace(pathway_info, " \\[PATH:ko[0-9]{5}\\]", "") %>% str_replace("[0-9]{5} ", "")
              pathway2name <- rbind(pathway2name, tibble(Pathway = pathway_id, Name = pathway_name))
    
              kos_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]][[c]][["name"]]
    
              kos <- str_match(kos_info, "K[0-9]*")[,1]
    
              ko2pathway <- rbind(ko2pathway, tibble(Ko = kos, Pathway = rep(pathway_id, length(kos))))
            }
          }
        }
    
        save(pathway2name, ko2pathway, file = "kegg_info.RData")
      }
    
      update_kegg(json = "ko00001.json")
    
    }
    
    #STEP5: 利用GO将gene与pathway联系起来,然后挑出query_name与pathway注释信息
    load(file = "kegg_info.RData")
    gene2pathway <- gene2ko %>% left_join(ko2pathway, by = "KO") %>% 
      dplyr::select(GID, Pathway) %>%
      na.omit()
    
    library(AnnotationForge)  
    
    #STEP6: 制作自己的Orgdb
      # 查询物种的Taxonomy,例如要查sesame
      # https://www.ncbi.nlm.nih.gov/taxonomy/?term= sesame
    tax_id = "4182"
    genus = "Sesamum" 
    species = "indicum"
    #gene2go <- unique(gene2go)
    
    #gene2go<-gene2go[!duplicated(gene2go),]
    #gene2ko<-gene2ko[!duplicated(gene2ko),]
    #gene2pathway<-gene2pathway[!duplicated(gene2pathway),]
    
    makeOrgPackage(gene_info=gene_info,
                   go=gene2go,
                   ko=gene2ko,
                   maintainer = "xxx <xxx@163.com>",
                   author = "",
                   pathway=gene2pathway,
                   version="0.0.1",
                   outputDir = ".",
                   tax_id=tax_id,
                   genus=genus,
                   species=species,
                   goTable="go")
    ricenew.orgdb <- str_c("org.", str_to_upper(str_sub(genus, 1, 1)) , species, ".eg.db", sep = "")
    
    

    options(stringsAsFactors = F) 的作用

    如果说一个data.frame中的元素是factor,你想转化成numeric,你会怎么做?比如d[1,1]是factor

    正确答案是 先as.character(x) 再as.numeric(x)

    哈哈,我刚发现如果直接as.numeric,就不是以前的数字了,坑爹啊。

    原来as.data.frame()有一个参数stringsAsFactors

    如果stringAsFactor=F

    就不会把字符转换为factor 这样以来,原来看起来是数字变成了character,原来是character的还是character

    KEGG富集分析

    setwd("G:/xxx")
    library(purrr)
    library(tidyverse)
    library(clusterProfiler)
    ################################################
    # 导入自己构建的 OrgDb
    ################################################
    install.packages("org.xxx.db", repos=NULL, type="sources")
    library(org.xxx.db)
    columns(org.xxx.db)
    
    # 导入需要进行富集分析的基因列表,并转换为向量
    #########################################################################################
    DD<-"DEGs"
    DEGs<- read.table(DD, header=TRUE, sep = "\t")
    gene_list <- DEGs[,1]
    
    ################################################
    # 从 OrgDB 提取 Pathway 和基因的对应关系
    ################################################
    
    pathway2gene <- AnnotationDbi::select(org.xxx.db, 
                                          keys = keys(org.xxx.db), 
                                          columns = c("Pathway","KO")) %>%
      na.omit() %>%
      dplyr::select(Pathway, GID)
    
    ################################################
    # 导入 Pathway 与名称对应关系
    ################################################
    load("kegg_info.RData")
    
    #KEGG pathway 富集
    ekp <- enricher(gene_list, 
                    TERM2GENE = pathway2gene, 
                    TERM2NAME = pathway2name, 
                    pvalueCutoff = 1, 
                    qvalueCutoff = 1,
                    pAdjustMethod = "BH",
                    minGSSize = 1)
    
    ekp_results <- as.data.frame(ekp)
    
    barplot(ekp, showCategory=20,color="pvalue",
            font.size=10)
    dotplot(ekp)
    
    emapplot(ekp)
    
    

    GO富集分析

    
    #########################################################################################
    GO 分析
    #########################################################################################
    
    ego <- enrichGO(gene = gene_list,                       #差异基因 vector 
                    keyType = "GID",                                   #差异基因的 ID 类型,需要是 OrgDb 支持的 
                    OrgDb = org.xxx.db,                               #对应的OrgDb 
                    ont = "CC",                                             #GO 分类名称,CC BP MF 
                    pvalueCutoff = 1,                                   #Pvalue 阈值 (pvalue=1指输出所有结果,pvalue=0.05指输出符合要求的结果) 
                    qvalueCutoff = 1,                                   #qvalue 阈值 pAdjustMethod = "BH", #Pvalue 矫正方法 
                    readable = FALSE)                               #TRUE 则展示SYMBOL,FALSE 则展示原来的ID(选false是因为不是所有gene都有symbol的)
    
    ego_results<-as.data.frame(ego)                          ###生成的ego文件转换成data.frame格式即可。
    
    write.table(ego_results, file = "ego_results.txt", quote = F)                    ###让保存的字符串不用“”引起来
    pdf(file = "ego_barplot.pdf")                                                                   ##打开一个PDF文件
    barplot(ego, showCategory=20, x = "GeneRatio")                                ##把图画到这个PDF文件里
    dev.off()                                                                                                 ##关闭PDF
    
    dotplot(ego)               
    emapplot(ego)
    

    参考
    https://www.jianshu.com/p/9c9e97167377
    https://www.jianshu.com/p/5d5394e0774f

    相关文章

      网友评论

        本文标题:自己构建物种包OrgDb,然后用clusterProfiler富

        本文链接:https://www.haomeiwen.com/subject/azdqyctx.html