美文网首页
OrderedDict | popitem(last=True)

OrderedDict | popitem(last=True)

作者: yuanCruise | 来源:发表于2019-12-22 16:35 被阅读0次
    1.OrderedDict保存的东西
    import torch
    state_dict = torch.load("resnet18.pth")
    
    for i in state_dict:
        print(i)
    
    ------------------------------------------
    conv1.weight
    bn1.running_mean
    bn1.running_var
    bn1.weight
    bn1.bias
    layer1.0.conv1.weight
    layer1.0.bn1.running_mean
    layer1.0.bn1.running_var
    layer1.0.bn1.weight
    layer1.0.bn1.bias
    layer1.0.conv2.weight
    layer1.0.bn2.running_mean
    layer1.0.bn2.running_var
    layer1.0.bn2.weight
    layer1.0.bn2.bias
    layer1.1.conv1.weight
    layer1.1.bn1.running_mean
    layer1.1.bn1.running_var
    layer1.1.bn1.weight
    layer1.1.bn1.bias
    layer1.1.conv2.weight
    layer1.1.bn2.running_mean
    layer1.1.bn2.running_var
    layer1.1.bn2.weight
    layer1.1.bn2.bias
    layer2.0.conv1.weight
    layer2.0.bn1.running_mean
    layer2.0.bn1.running_var
    layer2.0.bn1.weight
    layer2.0.bn1.bias
    layer2.0.conv2.weight
    layer2.0.bn2.running_mean
    layer2.0.bn2.running_var
    layer2.0.bn2.weight
    layer2.0.bn2.bias
    layer2.0.downsample.0.weight
    layer2.0.downsample.1.running_mean
    layer2.0.downsample.1.running_var
    layer2.0.downsample.1.weight
    layer2.0.downsample.1.bias
    layer2.1.conv1.weight
    layer2.1.bn1.running_mean
    layer2.1.bn1.running_var
    layer2.1.bn1.weight
    layer2.1.bn1.bias
    layer2.1.conv2.weight
    layer2.1.bn2.running_mean
    layer2.1.bn2.running_var
    layer2.1.bn2.weight
    layer2.1.bn2.bias
    layer3.0.conv1.weight
    layer3.0.bn1.running_mean
    layer3.0.bn1.running_var
    layer3.0.bn1.weight
    layer3.0.bn1.bias
    layer3.0.conv2.weight
    layer3.0.bn2.running_mean
    layer3.0.bn2.running_var
    layer3.0.bn2.weight
    layer3.0.bn2.bias
    layer3.0.downsample.0.weight
    layer3.0.downsample.1.running_mean
    layer3.0.downsample.1.running_var
    layer3.0.downsample.1.weight
    layer3.0.downsample.1.bias
    layer3.1.conv1.weight
    layer3.1.bn1.running_mean
    layer3.1.bn1.running_var
    layer3.1.bn1.weight
    layer3.1.bn1.bias
    layer3.1.conv2.weight
    layer3.1.bn2.running_mean
    layer3.1.bn2.running_var
    layer3.1.bn2.weight
    layer3.1.bn2.bias
    layer4.0.conv1.weight
    layer4.0.bn1.running_mean
    layer4.0.bn1.running_var
    layer4.0.bn1.weight
    layer4.0.bn1.bias
    layer4.0.conv2.weight
    layer4.0.bn2.running_mean
    layer4.0.bn2.running_var
    layer4.0.bn2.weight
    layer4.0.bn2.bias
    layer4.0.downsample.0.weight
    layer4.0.downsample.1.running_mean
    layer4.0.downsample.1.running_var
    layer4.0.downsample.1.weight
    layer4.0.downsample.1.bias
    layer4.1.conv1.weight
    layer4.1.bn1.running_mean
    layer4.1.bn1.running_var
    layer4.1.bn1.weight
    layer4.1.bn1.bias
    layer4.1.conv2.weight
    layer4.1.bn2.running_mean
    layer4.1.bn2.running_var
    layer4.1.bn2.weight
    layer4.1.bn2.bias
    fc.weight
    fc.bias
    
    2.last = False,先进先出
    import torch
    state_dict = torch.load("resnet18.pth")
    
    state_dict2 = state_dict.popitem(last = False)
    for i in state_dict:
        print(i)
    -------------------------------
    bn1.running_mean
    bn1.running_var
    bn1.weight
    bn1.bias
    layer1.0.conv1.weight
    layer1.0.bn1.running_mean
    layer1.0.bn1.running_var
    layer1.0.bn1.weight
    layer1.0.bn1.bias
    layer1.0.conv2.weight
    layer1.0.bn2.running_mean
    layer1.0.bn2.running_var
    layer1.0.bn2.weight
    layer1.0.bn2.bias
    layer1.1.conv1.weight
    layer1.1.bn1.running_mean
    layer1.1.bn1.running_var
    layer1.1.bn1.weight
    layer1.1.bn1.bias
    layer1.1.conv2.weight
    layer1.1.bn2.running_mean
    layer1.1.bn2.running_var
    layer1.1.bn2.weight
    layer1.1.bn2.bias
    layer2.0.conv1.weight
    layer2.0.bn1.running_mean
    layer2.0.bn1.running_var
    layer2.0.bn1.weight
    layer2.0.bn1.bias
    layer2.0.conv2.weight
    layer2.0.bn2.running_mean
    layer2.0.bn2.running_var
    layer2.0.bn2.weight
    layer2.0.bn2.bias
    layer2.0.downsample.0.weight
    layer2.0.downsample.1.running_mean
    layer2.0.downsample.1.running_var
    layer2.0.downsample.1.weight
    layer2.0.downsample.1.bias
    layer2.1.conv1.weight
    layer2.1.bn1.running_mean
    layer2.1.bn1.running_var
    layer2.1.bn1.weight
    layer2.1.bn1.bias
    layer2.1.conv2.weight
    layer2.1.bn2.running_mean
    layer2.1.bn2.running_var
    layer2.1.bn2.weight
    layer2.1.bn2.bias
    layer3.0.conv1.weight
    layer3.0.bn1.running_mean
    layer3.0.bn1.running_var
    layer3.0.bn1.weight
    layer3.0.bn1.bias
    layer3.0.conv2.weight
    layer3.0.bn2.running_mean
    layer3.0.bn2.running_var
    layer3.0.bn2.weight
    layer3.0.bn2.bias
    layer3.0.downsample.0.weight
    layer3.0.downsample.1.running_mean
    layer3.0.downsample.1.running_var
    layer3.0.downsample.1.weight
    layer3.0.downsample.1.bias
    layer3.1.conv1.weight
    layer3.1.bn1.running_mean
    layer3.1.bn1.running_var
    layer3.1.bn1.weight
    layer3.1.bn1.bias
    layer3.1.conv2.weight
    layer3.1.bn2.running_mean
    layer3.1.bn2.running_var
    layer3.1.bn2.weight
    layer3.1.bn2.bias
    layer4.0.conv1.weight
    layer4.0.bn1.running_mean
    layer4.0.bn1.running_var
    layer4.0.bn1.weight
    layer4.0.bn1.bias
    layer4.0.conv2.weight
    layer4.0.bn2.running_mean
    layer4.0.bn2.running_var
    layer4.0.bn2.weight
    layer4.0.bn2.bias
    layer4.0.downsample.0.weight
    layer4.0.downsample.1.running_mean
    layer4.0.downsample.1.running_var
    layer4.0.downsample.1.weight
    layer4.0.downsample.1.bias
    layer4.1.conv1.weight
    layer4.1.bn1.running_mean
    layer4.1.bn1.running_var
    layer4.1.bn1.weight
    layer4.1.bn1.bias
    layer4.1.conv2.weight
    layer4.1.bn2.running_mean
    layer4.1.bn2.running_var
    layer4.1.bn2.weight
    layer4.1.bn2.bias
    fc.weight
    fc.bias
    
    3.last = True,后进先出
    import torch
    state_dict = torch.load("resnet18.pth")
    
    state_dict2 = state_dict.popitem(last = True)
    for i in state_dict:
        print(i)
    
    -------------------------------
    conv1.weight
    bn1.running_mean
    bn1.running_var
    bn1.weight
    bn1.bias
    layer1.0.conv1.weight
    layer1.0.bn1.running_mean
    layer1.0.bn1.running_var
    layer1.0.bn1.weight
    layer1.0.bn1.bias
    layer1.0.conv2.weight
    layer1.0.bn2.running_mean
    layer1.0.bn2.running_var
    layer1.0.bn2.weight
    layer1.0.bn2.bias
    layer1.1.conv1.weight
    layer1.1.bn1.running_mean
    layer1.1.bn1.running_var
    layer1.1.bn1.weight
    layer1.1.bn1.bias
    layer1.1.conv2.weight
    layer1.1.bn2.running_mean
    layer1.1.bn2.running_var
    layer1.1.bn2.weight
    layer1.1.bn2.bias
    layer2.0.conv1.weight
    layer2.0.bn1.running_mean
    layer2.0.bn1.running_var
    layer2.0.bn1.weight
    layer2.0.bn1.bias
    layer2.0.conv2.weight
    layer2.0.bn2.running_mean
    layer2.0.bn2.running_var
    layer2.0.bn2.weight
    layer2.0.bn2.bias
    layer2.0.downsample.0.weight
    layer2.0.downsample.1.running_mean
    layer2.0.downsample.1.running_var
    layer2.0.downsample.1.weight
    layer2.0.downsample.1.bias
    layer2.1.conv1.weight
    layer2.1.bn1.running_mean
    layer2.1.bn1.running_var
    layer2.1.bn1.weight
    layer2.1.bn1.bias
    layer2.1.conv2.weight
    layer2.1.bn2.running_mean
    layer2.1.bn2.running_var
    layer2.1.bn2.weight
    layer2.1.bn2.bias
    layer3.0.conv1.weight
    layer3.0.bn1.running_mean
    layer3.0.bn1.running_var
    layer3.0.bn1.weight
    layer3.0.bn1.bias
    layer3.0.conv2.weight
    layer3.0.bn2.running_mean
    layer3.0.bn2.running_var
    layer3.0.bn2.weight
    layer3.0.bn2.bias
    layer3.0.downsample.0.weight
    layer3.0.downsample.1.running_mean
    layer3.0.downsample.1.running_var
    layer3.0.downsample.1.weight
    layer3.0.downsample.1.bias
    layer3.1.conv1.weight
    layer3.1.bn1.running_mean
    layer3.1.bn1.running_var
    layer3.1.bn1.weight
    layer3.1.bn1.bias
    layer3.1.conv2.weight
    layer3.1.bn2.running_mean
    layer3.1.bn2.running_var
    layer3.1.bn2.weight
    layer3.1.bn2.bias
    layer4.0.conv1.weight
    layer4.0.bn1.running_mean
    layer4.0.bn1.running_var
    layer4.0.bn1.weight
    layer4.0.bn1.bias
    layer4.0.conv2.weight
    layer4.0.bn2.running_mean
    layer4.0.bn2.running_var
    layer4.0.bn2.weight
    layer4.0.bn2.bias
    layer4.0.downsample.0.weight
    layer4.0.downsample.1.running_mean
    layer4.0.downsample.1.running_var
    layer4.0.downsample.1.weight
    layer4.0.downsample.1.bias
    layer4.1.conv1.weight
    layer4.1.bn1.running_mean
    layer4.1.bn1.running_var
    layer4.1.bn1.weight
    layer4.1.bn1.bias
    layer4.1.conv2.weight
    layer4.1.bn2.running_mean
    layer4.1.bn2.running_var
    layer4.1.bn2.weight
    layer4.1.bn2.bias
    fc.weight
    

    相关文章

      网友评论

          本文标题:OrderedDict | popitem(last=True)

          本文链接:https://www.haomeiwen.com/subject/ycvonctx.html