美文网首页
85. Maximal Rectangle

85. Maximal Rectangle

作者: 阿呆酱的算法工程师之路 | 来源:发表于2018-03-14 21:04 被阅读5次

    题目:

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
    For example, given the following matrix:
    1 0 1 0 0
    1 0 1 1 1
    1 1 1 1 1
    1 0 0 1 0
    Return 6.

    Solution:

    public class Solution {
        public int maximalRectangle(char[][] matrix) {
            if(matrix==null || matrix.length==0 || matrix[0].length==0) return 0;
            int [] l = new int [matrix[0].length];
            int [] r = new int [matrix[0].length];
            int [] h = new int [matrix[0].length];
            Arrays.fill(r,matrix[0].length);
            int ret = 0;
            for(int i = 0 ; i < matrix.length; i++){
                int cl =0 , cr = matrix[0].length;
                for(int j = 0 ; j < matrix[0].length ; j++){
                    if(matrix[i][j]=='1') h[j] = h[j]+1;
                    else h[j] = 0;
                }
                for(int j = 0 ; j < matrix[0].length ; j++){
                    if(matrix[i][j]=='1') l[j] = Math.max(l[j],cl);
                    else {
                        l[j]=0;
                        cl = j+1;
                    }
                }
                for(int j = matrix[0].length-1 ; j>=0 ;j--){
                    if(matrix[i][j]=='1') r[j] = Math.min(r[j],cr);
                    else{
                        r[j] = matrix[0].length;
                        cr = j;
                    }
                }
                for(int j = 0 ; j < matrix[0].length ; j++){
                    ret= Math.max(ret,(r[j]-l[j])*h[j]);
                }
            }
            return ret;
        }
    }
    

    思路:

    class Solution {
        public int maximalRectangle(char[][] matrix) {
            int rows = matrix.length;
            if(rows == 0) return 0;
            int cols = matrix[0].length;
            int[][] r = new int[rows][cols];
            int[][] c = new int[rows][cols];
            int max = 0;
            for(int i = 0; i < rows; i++) {
                for(int j = 0; j < cols; j++) {
                    if(j == 0) {
                        r[i][j] = (matrix[i][j] == '1') ? 1 : 0;
                    } else {
                        r[i][j] = (matrix[i][j] == '1') ? 1 + r[i][j - 1] : 0;
                    }
                    
                    if(i == 0) {
                        c[i][j] = (matrix[i][j] == '1') ? 1 : 0;
                    } else {
                        c[i][j] = (matrix[i][j] == '1') ? 1 + c[i - 1][j] : 0;
                    }
                }
            }
            int minY = rows; 
            for(int j = 0; j < cols; j++) {
                for(int i = 0; i < rows; i++) {
                    if(c[i][j] != 0) {
                        minY = r[i][j];
                        for(int k = 0; k < c[i][j]; k++) {
                            minY = (r[i - k][j] < minY) ? r[i - k][j] : minY;
                            int temp = (k + 1) * minY;
                            max = (temp > max) ? temp : max;
                        }
                    }                
                }
            }
            return max;
        }
    }
    

    相关文章

      网友评论

          本文标题:85. Maximal Rectangle

          本文链接:https://www.haomeiwen.com/subject/ydgfqftx.html