美文网首页
Leetcode 85. Maximal Rectangle

Leetcode 85. Maximal Rectangle

作者: AlexSun1995 | 来源:发表于2017-09-15 00:27 被阅读0次

    Problem

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
    For example, given the following matrix:
    1 0 1 0 0
    1 0 1 1 1
    1 1 1 1 1
    1 0 0 1 0
    return 6

    Think

    这个问题对我而言还是有一点难度的,主要参考了youtube上的一个视频:https://www.youtube.com/watch?v=g8bSdXCG-lA&t=71s
    这个问题解答可以分解为两个步骤,在这之前需要考虑一个叫做
    max Area Rectangle in histogram的问题(直方图中最大的矩形面积)
    这个问题的描述用一个图还是一目了然的,不需要太多解释.

    image.png
    现在我们假设解决了max Area Rectangle in histogram,现在考虑怎么解决本来需要解决的问题.
      现在有输入数据:

    1 0 1 0 0
    1 0 1 1 1
    1 1 1 1 1
    1 0 0 1 0

    • 用一个dp数组保存"直方图"数据,数组的大小与行同长(len(dp) == 5) dp[i]可以理解为以第i 行为x轴绘制的直方图纵轴高度数据.
    • 依照行循环
       第1次循环 dp[0] = [1,0 ,1, 0, 0 ]
      第2次: dp[1] = [2, 0, 2, 1, 1]
       第3次: dp[2] = [3, 1, 2, 2, 2]
       第4次: dp[3] = [4, 0, 0, 3, 0]
    • 依次计算上述四次循环中dp数据的max Area Rectangle in histogram值,四次循环中的最大值就是最终答案

    max Area Rectangle in histogram 问题

    这个问题其实也并不简单,特别是如果要用O(N)复杂度解决问题的话,还是比较考验智商的.
    关于这个问题的解决方案可以参考:
    http://www.geeksforgeeks.org/largest-rectangle-under-histogram/
    这个是一个非常巧妙的解决方案,基本思想是使用stack

    // The main function to find the maximum rectangular area under given
    // histogram with n bars
    int getMaxArea(int hist[], int n)
    {
        // Create an empty stack. The stack holds indexes of hist[] array
        // The bars stored in stack are always in increasing order of their
        // heights.
        stack<int> s;
     
        int max_area = 0; // Initalize max area
        int tp;  // To store top of stack
        int area_with_top; // To store area with top bar    as the smallest bar
     
        // Run through all bars of given histogram
        int i = 0;
        while (i < n)
        {
            // If this bar is higher than the bar on top stack, push it to stack
            if (s.empty() || hist[s.top()] <= hist[i])
                s.push(i++);
            // If this bar is lower than top of stack, then calculate area of rectangle 
            // with stack top as the smallest (or minimum height) bar. 'i' is 
            // 'right index' for the top and element before top in stack is 'left index'
            else
            {
                tp = s.top();  // store the top index
                s.pop();  // pop the top
                cout<<"the top is:"<<hist[tp]<<endl;
                // Calculate the area with hist[tp] stack as smallest bar
                area_with_top = hist[tp] * (s.empty() ? i : i - s.top() - 1);
                cout<<"max area:"<<area_with_top<<endl;
                // update max area, if needed
                if (max_area < area_with_top)
                    max_area = area_with_top;
            }
        }
     
        // Now pop the remaining bars from stack and calculate area with every
        // popped bar as the smallest bar
        while (s.empty() == false)
        {
            tp = s.top();
            s.pop();
            cout<<"top is:"<<hist[tp]<<endl;
            area_with_top = hist[tp] * (s.empty() ? i : i - s.top() - 1);
            cout<<"area:"<<area_with_top<<endl;
            if (max_area < area_with_top)
                max_area = area_with_top;
        }
     
        return max_area;
    }
    int main(){
    int hist[] = {4,2,5,3,1,6};
        int n = sizeof(hist)/sizeof(hist[0]);
        cout << "Maximum area is " << getMaxArea(hist, n)<<endl;
        return 0;
    }
    

    参考资源:https://www.youtube.com/watch?v=KkJrGxuQtYo
    这里所使用的原理是: 对于每一个高度,计算在这个高度上能够达到的最大面积值,然后在这些最大面积值中进行比较,得出最终结果.在某一个高度上能够带到的最大面积由"边界"决定,所谓边界指的是两边的高度都比指定高度要低.

    Code

    class Solution(object):
        
        def maxAreaRectangle(self, seq):
            # type(seq): list(int)
            # list[i] represent height at i
            max_area = -1
            i = 0
            stack = []
            while i < len(seq):
                if len(stack) == 0 or seq[stack[-1]] <= seq[i]:
                    stack.append(i)
                    i += 1
                else:
                    tp = stack.pop()
                    area_with_top = seq[tp] * (i if len(stack) == 0 else (i - stack[-1] - 1))
                    if area_with_top > max_area:
                        max_area = area_with_top
            while len(stack) > 0:
                tp = stack.pop()
                area_with_top = seq[tp] * (i if len(stack) == 0 else (i - stack[-1] - 1))
                if area_with_top > max_area:
                    max_area = area_with_top
            return max_area
    
        def maximalRectangle(self, matrix):
            """
            :type matrix: List[List[str]]
            :rtype: int
            """
            m = len(matrix)
            if m == 0:
                return 0
            n = len(matrix[0])
            ans = -1
            dp = []
            for i in range(m):
                if i == 0:
                    for j in range(n):
                        dp.append(int(matrix[i][j]))
                else:
                    new_dp = []
                    for j in range(n):
                        if dp[j] != 0 and matrix[i][j] == '1':
                            new_dp.append(dp[j] + 1)
                        else:
                            new_dp.append(int(matrix[i][j]))
                    dp = new_dp
                level_max = self.maxAreaRectangle(dp)
                if level_max > ans:
                    ans = level_max
            return ans
    ```  

    相关文章

      网友评论

          本文标题:Leetcode 85. Maximal Rectangle

          本文链接:https://www.haomeiwen.com/subject/feljsxtx.html