美文网首页
Task 5:模型融合

Task 5:模型融合

作者: 我是曾阿牛 | 来源:发表于2020-04-04 17:42 被阅读0次

    5.4 代码示例

    5.4.1 回归\分类概率-融合:

    1)简单加权平均,结果直接融合

    ## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
    test_pre1 = [1.2, 3.2, 2.1, 6.2]
    test_pre2 = [0.9, 3.1, 2.0, 5.9]
    test_pre3 = [1.1, 2.9, 2.2, 6.0]
    
    # y_test_true 代表第模型的真实值
    y_test_true = [1, 3, 2, 6] 
    
    import numpy as np
    import pandas as pd
    
    ## 定义结果的加权平均函数
    def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
        Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
        return Weighted_result
    
    from sklearn import metrics
    # 各模型的预测结果计算MAE
    print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
    print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
    print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))
    
    Pred1 MAE: 0.175
    Pred2 MAE: 0.075
    Pred3 MAE: 0.1
    
    ## 根据加权计算MAE
    w = [0.3,0.4,0.3] # 定义比重权值
    Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
    print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))
    
    Weighted_pre MAE: 0.0575
    

    可以发现加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。

    还有一些特殊的形式,比如mean平均,median平均

    ## 定义结果的加权平均函数
    def Mean_method(test_pre1,test_pre2,test_pre3):
        Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)
        return Mean_result
    
    Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
    print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))
    
    Mean_pre MAE: 0.0666666666667
    
    ## 定义结果的加权平均函数
    def Median_method(test_pre1,test_pre2,test_pre3):
        Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)
        return Median_result
    
    Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
    print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))
    
    Median_pre MAE: 0.075
    

    2) Stacking融合(回归):

    from sklearn import linear_model
    
    def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
        model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
        Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
        return Stacking_result
    
    ## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
    train_reg1 = [3.2, 8.2, 9.1, 5.2]
    train_reg2 = [2.9, 8.1, 9.0, 4.9]
    train_reg3 = [3.1, 7.9, 9.2, 5.0]
    # y_test_true 代表第模型的真实值
    y_train_true = [3, 8, 9, 5] 
    
    test_pre1 = [1.2, 3.2, 2.1, 6.2]
    test_pre2 = [0.9, 3.1, 2.0, 5.9]
    test_pre3 = [1.1, 2.9, 2.2, 6.0]
    
    # y_test_true 代表第模型的真实值
    y_test_true = [1, 3, 2, 6] 
    
    model_L2= linear_model.LinearRegression()
    Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                                   test_pre1,test_pre2,test_pre3,model_L2)
    print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))
    
    Stacking_pre MAE: 0.0421348314607
    

    可以发现模型结果相对于之前有进一步的提升,这是我们需要注意的一点是,对于第二层Stacking的模型不宜选取的过于复杂,这样会导致模型在训练集上过拟合,从而使得在测试集上并不能达到很好的效果。

    5.4.2 分类模型融合:

    对于分类,同样的可以使用融合方法,比如简单投票,Stacking...

    from sklearn.datasets import make_blobs
    from sklearn import datasets
    from sklearn.tree import DecisionTreeClassifier
    import numpy as np
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import VotingClassifier
    from xgboost import XGBClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    from sklearn.datasets import make_moons
    from sklearn.metrics import accuracy_score,roc_auc_score
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import StratifiedKFold
    

    1)Voting投票机制:

    Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

    '''
    硬投票:对多个模型直接进行投票,不区分模型结果的相对重要度,最终投票数最多的类为最终被预测的类。
    '''
    iris = datasets.load_iris()
    
    x=iris.data
    y=iris.target
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    
    clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
                         colsample_bytree=0.6, objective='binary:logistic')
    clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                                  min_samples_leaf=63,oob_score=True)
    clf3 = SVC(C=0.1)
    
    # 硬投票
    eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
    for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
        scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
        print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
    
    Accuracy: 0.97 (+/- 0.02) [XGBBoosting]
    Accuracy: 0.33 (+/- 0.00) [Random Forest]
    Accuracy: 0.95 (+/- 0.03) [SVM]
    Accuracy: 0.94 (+/- 0.04) [Ensemble]
    
    '''
    软投票:和硬投票原理相同,增加了设置权重的功能,可以为不同模型设置不同权重,进而区别模型不同的重要度。
    '''
    x=iris.data
    y=iris.target
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    
    clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.8,
                         colsample_bytree=0.8, objective='binary:logistic')
    clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                                  min_samples_leaf=63,oob_score=True)
    clf3 = SVC(C=0.1, probability=True)
    
    # 软投票
    eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])
    clf1.fit(x_train, y_train)
    
    for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
        scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
        print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
    
    Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
    Accuracy: 0.33 (+/- 0.00) [Random Forest]
    Accuracy: 0.95 (+/- 0.03) [SVM]
    Accuracy: 0.96 (+/- 0.02) [Ensemble]
    

    2)分类的Stacking\Blending融合:

    stacking是一种分层模型集成框架。

    以两层为例,第一层由多个基学习器组成,其输入为原始训练集,第二层的模型则是以第一层基学习器的输出作为训练集进行再训练,从而得到完整的stacking模型, stacking两层模型都使用了全部的训练数据。

    '''
    5-Fold Stacking
    '''
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import ExtraTreesClassifier,GradientBoostingClassifier
    import pandas as pd
    #创建训练的数据集
    data_0 = iris.data
    data = data_0[:100,:]
    
    target_0 = iris.target
    target = target_0[:100]
    
    #模型融合中使用到的各个单模型
    clfs = [LogisticRegression(solver='lbfgs'),
            RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
            GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
     
    #切分一部分数据作为测试集
    X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)
    
    dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
    dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))
    
    #5折stacking
    n_splits = 5
    skf = StratifiedKFold(n_splits)
    skf = skf.split(X, y)
    
    for j, clf in enumerate(clfs):
        #依次训练各个单模型
        dataset_blend_test_j = np.zeros((X_predict.shape[0], 5))
        for i, (train, test) in enumerate(skf):
            #5-Fold交叉训练,使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新特征。
            X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]
            clf.fit(X_train, y_train)
            y_submission = clf.predict_proba(X_test)[:, 1]
            dataset_blend_train[test, j] = y_submission
            dataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]
        #对于测试集,直接用这k个模型的预测值均值作为新的特征。
        dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)
        print("val auc Score: %f" % roc_auc_score(y_predict, dataset_blend_test[:, j]))
    
    clf = LogisticRegression(solver='lbfgs')
    clf.fit(dataset_blend_train, y)
    y_submission = clf.predict_proba(dataset_blend_test)[:, 1]
    
    print("Val auc Score of Stacking: %f" % (roc_auc_score(y_predict, y_submission)))
    
    
    val auc Score: 1.000000
    val auc Score: 0.500000
    val auc Score: 0.500000
    val auc Score: 0.500000
    val auc Score: 0.500000
    Val auc Score of Stacking: 1.000000
    

    Blending,其实和Stacking是一种类似的多层模型融合的形式

    其主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。

    在第一层,我们在这70%的数据上训练多个模型,然后去预测那30%数据的label,同时也预测test集的label。

    在第二层,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练,然后用test集第一层预测的label做特征,用第二层训练的模型做进一步预测

    其优点在于:

    • 1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
    • 2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集

    缺点在于:

    • 1.使用了很少的数据(第二阶段的blender只使用training set10%的量)
    • 2.blender可能会过拟合
    • 3.stacking使用多次的交叉验证会比较稳健
      '''
    '''
    Blending
    '''
     
    #创建训练的数据集
    #创建训练的数据集
    data_0 = iris.data
    data = data_0[:100,:]
    
    target_0 = iris.target
    target = target_0[:100]
     
    #模型融合中使用到的各个单模型
    clfs = [LogisticRegression(solver='lbfgs'),
            RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
            ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            #ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
            GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
     
    #切分一部分数据作为测试集
    X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)
    
    #切分训练数据集为d1,d2两部分
    X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=2020)
    dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
    dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
     
    for j, clf in enumerate(clfs):
        #依次训练各个单模型
        clf.fit(X_d1, y_d1)
        y_submission = clf.predict_proba(X_d2)[:, 1]
        dataset_d1[:, j] = y_submission
        #对于测试集,直接用这k个模型的预测值作为新的特征。
        dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
        print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))
    
    #融合使用的模型
    clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
    clf.fit(dataset_d1, y_d2)
    y_submission = clf.predict_proba(dataset_d2)[:, 1]
    print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))
    
    val auc Score: 1.000000
    val auc Score: 1.000000
    val auc Score: 1.000000
    val auc Score: 1.000000
    val auc Score: 1.000000
    Val auc Score of Blending: 1.000000
    

    参考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829

    3)分类的Stacking融合(利用mlxtend):

    !pip install mlxtend
    
    import warnings
    warnings.filterwarnings('ignore')
    import itertools
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    
    from sklearn import datasets
    from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB 
    from sklearn.ensemble import RandomForestClassifier
    from mlxtend.classifier import StackingClassifier
    
    from sklearn.model_selection import cross_val_score
    from mlxtend.plotting import plot_learning_curves
    from mlxtend.plotting import plot_decision_regions
    
    # 以python自带的鸢尾花数据集为例
    iris = datasets.load_iris()
    X, y = iris.data[:, 1:3], iris.target
    
    clf1 = KNeighborsClassifier(n_neighbors=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    lr = LogisticRegression()
    sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                              meta_classifier=lr)
    
    label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
    clf_list = [clf1, clf2, clf3, sclf]
    
    fig = plt.figure(figsize=(10,8))
    gs = gridspec.GridSpec(2, 2)
    grid = itertools.product([0,1],repeat=2)
    
    clf_cv_mean = []
    clf_cv_std = []
    for clf, label, grd in zip(clf_list, label, grid):
            
        scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
        print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
        clf_cv_mean.append(scores.mean())
        clf_cv_std.append(scores.std())
            
        clf.fit(X, y)
        ax = plt.subplot(gs[grd[0], grd[1]])
        fig = plot_decision_regions(X=X, y=y, clf=clf)
        plt.title(label)
    
    plt.show()
    

    可以发现 基模型 用 'KNN', 'Random Forest', 'Naive Bayes' 然后再这基础上 次级模型加一个 'LogisticRegression',模型测试效果有着很好的提升。

    5.4.3 一些其它方法:

    将特征放进模型中预测,并将预测结果变换并作为新的特征加入原有特征中再经过模型预测结果 (Stacking变化)

    (可以反复预测多次将结果加入最后的特征中)

    def Ensemble_add_feature(train,test,target,clfs):
        
        # n_flods = 5
        # skf = list(StratifiedKFold(y, n_folds=n_flods))
    
        train_ = np.zeros((train.shape[0],len(clfs*2)))
        test_ = np.zeros((test.shape[0],len(clfs*2)))
    
        for j,clf in enumerate(clfs):
            '''依次训练各个单模型'''
            # print(j, clf)
            '''使用第1个部分作为预测,第2部分来训练模型,获得其预测的输出作为第2部分的新特征。'''
            # X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]
    
            clf.fit(train,target)
            y_train = clf.predict(train)
            y_test = clf.predict(test)
    
            ## 新特征生成
            train_[:,j*2] = y_train**2
            test_[:,j*2] = y_test**2
            train_[:, j+1] = np.exp(y_train)
            test_[:, j+1] = np.exp(y_test)
            # print("val auc Score: %f" % r2_score(y_predict, dataset_d2[:, j]))
            print('Method ',j)
        
        train_ = pd.DataFrame(train_)
        test_ = pd.DataFrame(test_)
        return train_,test_
    
    
    from sklearn.model_selection import cross_val_score, train_test_split
    from sklearn.linear_model import LogisticRegression
    clf = LogisticRegression()
    
    data_0 = iris.data
    data = data_0[:100,:]
    
    target_0 = iris.target
    target = target_0[:100]
    
    x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.3)
    x_train = pd.DataFrame(x_train) ; x_test = pd.DataFrame(x_test)
    
    #模型融合中使用到的各个单模型
    clfs = [LogisticRegression(),
            RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
            ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
            GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
    
    New_train,New_test = Ensemble_add_feature(x_train,x_test,y_train,clfs)
    
    clf = LogisticRegression()
    # clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
    clf.fit(New_train, y_train)
    y_emb = clf.predict_proba(New_test)[:, 1]
    
    print("Val auc Score of stacking: %f" % (roc_auc_score(y_test, y_emb)))
    
    Method  0
    Method  1
    Method  2
    Method  3
    Method  4
    Val auc Score of stacking: 1.000000
    

    5.4.4 本赛题示例

    import pandas as pd
    import numpy as np
    import warnings
    import matplotlib
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    warnings.filterwarnings('ignore')
    %matplotlib inline
    
    import itertools
    import matplotlib.gridspec as gridspec
    from sklearn import datasets
    from sklearn.linear_model import LogisticRegression
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.naive_bayes import GaussianNB 
    from sklearn.ensemble import RandomForestClassifier
    # from mlxtend.classifier import StackingClassifier
    from sklearn.model_selection import cross_val_score, train_test_split
    # from mlxtend.plotting import plot_learning_curves
    # from mlxtend.plotting import plot_decision_regions
    
    from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import train_test_split
    
    from sklearn import linear_model
    from sklearn import preprocessing
    from sklearn.svm import SVR
    from sklearn.decomposition import PCA,FastICA,FactorAnalysis,SparsePCA
    
    import lightgbm as lgb
    import xgboost as xgb
    from sklearn.model_selection import GridSearchCV,cross_val_score
    from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
    
    from sklearn.metrics import mean_squared_error, mean_absolute_error
    
    ## 数据读取
    Train_data = pd.read_csv('datalab/231784/used_car_train_20200313.csv', sep=' ')
    TestA_data = pd.read_csv('datalab/231784/used_car_testA_20200313.csv', sep=' ')
    
    print(Train_data.shape)
    print(TestA_data.shape)
    
    (150000, 31)
    (50000, 30)
    
    Train_data.head()
    
    numerical_cols = Train_data.select_dtypes(exclude = 'object').columns
    print(numerical_cols)
    
    Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
           'gearbox', 'power', 'kilometer', 'regionCode', 'seller', 'offerType',
           'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
           'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
          dtype='object')
    
    feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','price']]
    
    X_data = Train_data[feature_cols]
    Y_data = Train_data['price']
    
    X_test  = TestA_data[feature_cols]
    
    print('X train shape:',X_data.shape)
    print('X test shape:',X_test.shape)
    
    X train shape: (150000, 26)
    X test shape: (50000, 26)
    
    def Sta_inf(data):
        print('_min',np.min(data))
        print('_max:',np.max(data))
        print('_mean',np.mean(data))
        print('_ptp',np.ptp(data))
        print('_std',np.std(data))
        print('_var',np.var(data))
    
    print('Sta of label:')
    Sta_inf(Y_data)
    
    Sta of label:
    _min 11
    _max: 99999
    _mean 5923.32733333
    _ptp 99988
    _std 7501.97346988
    _var 56279605.9427
    
    X_data = X_data.fillna(-1)
    X_test = X_test.fillna(-1)
    
    def build_model_lr(x_train,y_train):
        reg_model = linear_model.LinearRegression()
        reg_model.fit(x_train,y_train)
        return reg_model
    
    def build_model_ridge(x_train,y_train):
        reg_model = linear_model.Ridge(alpha=0.8)#alphas=range(1,100,5)
        reg_model.fit(x_train,y_train)
        return reg_model
    
    def build_model_lasso(x_train,y_train):
        reg_model = linear_model.LassoCV()
        reg_model.fit(x_train,y_train)
        return reg_model
    
    def build_model_gbdt(x_train,y_train):
        estimator =GradientBoostingRegressor(loss='ls',subsample= 0.85,max_depth= 5,n_estimators = 100)
        param_grid = { 
                'learning_rate': [0.05,0.08,0.1,0.2],
                }
        gbdt = GridSearchCV(estimator, param_grid,cv=3)
        gbdt.fit(x_train,y_train)
        print(gbdt.best_params_)
        # print(gbdt.best_estimator_ )
        return gbdt
    
    def build_model_xgb(x_train,y_train):
        model = xgb.XGBRegressor(n_estimators=120, learning_rate=0.08, gamma=0, subsample=0.8,\
            colsample_bytree=0.9, max_depth=5) #, objective ='reg:squarederror'
        model.fit(x_train, y_train)
        return model
    
    def build_model_lgb(x_train,y_train):
        estimator = lgb.LGBMRegressor(num_leaves=63,n_estimators = 100)
        param_grid = {
            'learning_rate': [0.01, 0.05, 0.1],
        }
        gbm = GridSearchCV(estimator, param_grid)
        gbm.fit(x_train, y_train)
        return gbm
    
    

    2)XGBoost的五折交叉回归验证实现

    ## xgb
    xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, subsample=0.8,\
            colsample_bytree=0.9, max_depth=7) # ,objective ='reg:squarederror'
    
    scores_train = []
    scores = []
    
    ## 5折交叉验证方式
    sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
    for train_ind,val_ind in sk.split(X_data,Y_data):
        
        train_x=X_data.iloc[train_ind].values
        train_y=Y_data.iloc[train_ind]
        val_x=X_data.iloc[val_ind].values
        val_y=Y_data.iloc[val_ind]
        
        xgr.fit(train_x,train_y)
        pred_train_xgb=xgr.predict(train_x)
        pred_xgb=xgr.predict(val_x)
        
        score_train = mean_absolute_error(train_y,pred_train_xgb)
        scores_train.append(score_train)
        score = mean_absolute_error(val_y,pred_xgb)
        scores.append(score)
    
    print('Train mae:',np.mean(score_train))
    print('Val mae',np.mean(scores))
    
    Train mae: 558.212360169
    Val mae 693.120168439
    

    3)划分数据集,并用多种方法训练和预测

    ## Split data with val
    x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)
    
    ## Train and Predict
    print('Predict LR...')
    model_lr = build_model_lr(x_train,y_train)
    val_lr = model_lr.predict(x_val)
    subA_lr = model_lr.predict(X_test)
    
    print('Predict Ridge...')
    model_ridge = build_model_ridge(x_train,y_train)
    val_ridge = model_ridge.predict(x_val)
    subA_ridge = model_ridge.predict(X_test)
    
    print('Predict Lasso...')
    model_lasso = build_model_lasso(x_train,y_train)
    val_lasso = model_lasso.predict(x_val)
    subA_lasso = model_lasso.predict(X_test)
    
    print('Predict GBDT...')
    model_gbdt = build_model_gbdt(x_train,y_train)
    val_gbdt = model_gbdt.predict(x_val)
    subA_gbdt = model_gbdt.predict(X_test)
    
    
    Predict LR...
    Predict Ridge...
    Predict Lasso...
    Predict GBDT...
    {'learning_rate': 0.1, 'n_estimators': 80}
    

    一般比赛中效果最为显著的两种方法

    print('predict XGB...')
    model_xgb = build_model_xgb(x_train,y_train)
    val_xgb = model_xgb.predict(x_val)
    subA_xgb = model_xgb.predict(X_test)
    
    print('predict lgb...')
    model_lgb = build_model_lgb(x_train,y_train)
    val_lgb = model_lgb.predict(x_val)
    subA_lgb = model_lgb.predict(X_test)
    
    predict XGB...
    predict lgb...
    
    print('Sta inf of lgb:')
    Sta_inf(subA_lgb)
    
    Sta inf of lgb:
    _min -126.864734992
    _max: 90152.4775557
    _mean 5917.96632163
    _ptp 90279.3422907
    _std 7358.88582391
    _var 54153200.5693
    

    1)加权融合

    def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
        Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
        return Weighted_result
    
    ## Init the Weight
    w = [0.3,0.4,0.3]
    
    ## 测试验证集准确度
    val_pre = Weighted_method(val_lgb,val_xgb,val_gbdt,w)
    MAE_Weighted = mean_absolute_error(y_val,val_pre)
    print('MAE of Weighted of val:',MAE_Weighted)
    
    ## 预测数据部分
    subA = Weighted_method(subA_lgb,subA_xgb,subA_gbdt,w)
    print('Sta inf:')
    Sta_inf(subA)
    ## 生成提交文件
    sub = pd.DataFrame()
    sub['SaleID'] = X_test.index
    sub['price'] = subA
    sub.to_csv('./sub_Weighted.csv',index=False)
    
    MAE of Weighted of val: 730.877443666
    Sta inf:
    _min -2816.93914153
    _max: 88576.7842223
    _mean 5920.38233546
    _ptp 91393.7233639
    _std 7325.20946801
    _var 53658693.7502
    
    ## 与简单的LR(线性回归)进行对比
    val_lr_pred = model_lr.predict(x_val)
    MAE_lr = mean_absolute_error(y_val,val_lr_pred)
    print('MAE of lr:',MAE_lr)
    
    MAE of lr: 2597.45638384
    

    2)Stacking融合

    ## Starking
    
    ## 第一层
    train_lgb_pred = model_lgb.predict(x_train)
    train_xgb_pred = model_xgb.predict(x_train)
    train_gbdt_pred = model_gbdt.predict(x_train)
    
    Strak_X_train = pd.DataFrame()
    Strak_X_train['Method_1'] = train_lgb_pred
    Strak_X_train['Method_2'] = train_xgb_pred
    Strak_X_train['Method_3'] = train_gbdt_pred
    
    Strak_X_val = pd.DataFrame()
    Strak_X_val['Method_1'] = val_lgb
    Strak_X_val['Method_2'] = val_xgb
    Strak_X_val['Method_3'] = val_gbdt
    
    Strak_X_test = pd.DataFrame()
    Strak_X_test['Method_1'] = subA_lgb
    Strak_X_test['Method_2'] = subA_xgb
    Strak_X_test['Method_3'] = subA_gbdt
    
    Strak_X_test.head()
    
    ## level2-method 
    model_lr_Stacking = build_model_lr(Strak_X_train,y_train)
    ## 训练集
    train_pre_Stacking = model_lr_Stacking.predict(Strak_X_train)
    print('MAE of Stacking-LR:',mean_absolute_error(y_train,train_pre_Stacking))
    
    ## 验证集
    val_pre_Stacking = model_lr_Stacking.predict(Strak_X_val)
    print('MAE of Stacking-LR:',mean_absolute_error(y_val,val_pre_Stacking))
    
    ## 预测集
    print('Predict Stacking-LR...')
    subA_Stacking = model_lr_Stacking.predict(Strak_X_test)
    
    
    MAE of Stacking-LR: 628.399441036
    MAE of Stacking-LR: 707.673951794
    Predict Stacking-LR...
    
    subA_Stacking[subA_Stacking<10]=10  ## 去除过小的预测值
    
    sub = pd.DataFrame()
    sub['SaleID'] = TestA_data.SaleID
    sub['price'] = subA_Stacking
    sub.to_csv('./sub_Stacking.csv',index=False)
    
    print('Sta inf:')
    Sta_inf(subA_Stacking)
    
    Sta inf:
    _min 10.0
    _max: 90849.3729816
    _mean 5917.39429976
    _ptp 90839.3729816
    _std 7396.09766172
    _var 54702260.6217
    

    3.4 经验总结

    比赛的融合这个问题,个人的看法来说其实涉及多个层面,也是提分和提升模型鲁棒性的一种重要方法:

    • 1)结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候,有一个很重要的条件是模型结果的得分要比较近似,然后结果的差异要比较大,这样的结果融合往往有比较好的效果提升。

    • 2)特征层面的融合,这个层面其实感觉不叫融合,准确说可以叫分割,很多时候如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。

    • 3)模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加Staking层,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。

    相关文章

      网友评论

          本文标题:Task 5:模型融合

          本文链接:https://www.haomeiwen.com/subject/yggjphtx.html