美文网首页
tensorflow功能扩展

tensorflow功能扩展

作者: tu7jako | 来源:发表于2020-05-27 16:37 被阅读0次

    1. 自制数据集

    目标:将自己的图片集和标签集转换为适合神经网络读取的多维数组
    例如:

    from PIL import Image
    import numpy as np
    import os
    
    train_path = './fashion_image_label/fashion_train_jpg_60000/'
    train_txt = './fashion_image_label/fashion_train_jpg_60000.txt'
    x_train_savepath = './fashion_image_label/fashion_x_train.npy'
    y_train_savepath = './fashion_image_label/fahion_y_train.npy'
    
    test_path = './fashion_image_label/fashion_test_jpg_10000/'
    test_txt = './fashion_image_label/fashion_test_jpg_10000.txt'
    x_test_savepath = './fashion_image_label/fashion_x_test.npy'
    y_test_savepath = './fashion_image_label/fashion_y_test.npy'
    
    
    def generateds(path, txt):
        f = open(txt, 'r')
        contents = f.readlines()
        f.close()
        x, y_ = [], []
        for content in contents:
            value = content.split() 
            img_path = path + value[0]
            img = Image.open(img_path)
            img = np.array(img.convert('L'))
            img = img / 255.
            x.append(img)
            y_.append(value[1])
            print('loading : ' + content)
    
        x = np.array(x)
        y_ = np.array(y_)
        y_ = y_.astype(np.int64)
        return x, y_
    
    
    if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
            x_test_savepath) and os.path.exists(y_test_savepath):
        print('-------------Load Datasets-----------------')
        x_train_save = np.load(x_train_savepath)
        y_train = np.load(y_train_savepath)
        x_test_save = np.load(x_test_savepath)
        y_test = np.load(y_test_savepath)
        x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
        x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
    else:
        print('-------------Generate Datasets-----------------')
        x_train, y_train = generateds(train_path, train_txt)
        x_test, y_test = generateds(test_path, test_txt)
    
        print('-------------Save Datasets-----------------')
        x_train_save = np.reshape(x_train, (len(x_train), -1))
        x_test_save = np.reshape(x_test, (len(x_test), -1))
        np.save(x_train_savepath, x_train_save)
        np.save(y_train_savepath, y_train)
        np.save(x_test_savepath, x_test_save)
        np.save(y_test_savepath, y_test)
    

    2. 数据增强

    数据增强可以帮助扩展数据集。对图像增加,就是对图像进行简单形变,用来应对因拍照角度不同而引起的图像变形。如:

    tf.keras.preprocessing.image.ImageDataGenerator(
      rescale= 所以数据将乘以该数值,
      rotation_range = 随机旋转角度数范围,
      width_shift_range=随机宽度偏移量,
      height_shift_range=随机高度偏移量,
      horizontal_flip=是否随机水平旋转,
      zoom_range=随机缩放的范围[1-n, 1+n]
    )
    

    例如,用之前的Minst数据集来展示数据增强的用法:

    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    
    fashion = tf.keras.datasets.fashion_mnist
    (x_train, y_train), (x_test, y_test) = fashion.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,使数据和网络结构匹配
    
    image_gen_train = ImageDataGenerator(
        rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
        rotation_range=45,  # 随机45度旋转
        width_shift_range=.15,  # 宽度偏移
        height_shift_range=.15,  # 高度偏移
        horizontal_flip=True,  # 水平翻转
        zoom_range=0.5  # 将图像随机缩放阈量50%
    )
    image_gen_train.fit(x_train)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    #
    model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
              validation_freq=1)
    model.summary()
    
    

    3. 断点续训,存取模型

    读取模型:model.load_weights(路径文件名)
    由于在生成保存模型数据的ckpt文件时会同步生成.index索引文件,所以可以根据有无相应的index文件来判断是否有已保存的模型文件

    checkpoint_save_path = './checkpoint/minst.ckpt'
    if os.path.exists(checkpoint_save_path + '.index'):
       print("********load the model*********")
        model.load_weights(checkpoint_save_path)
    

    保存模型参数:

    tf.keras.callbacks.ModelCheckpoint(
        filepath=路径文件名,
        save_weights_only=True/False,  # 是否只保留模型参数
        save_best_only=True/False  # 是否只保留最优结果
    )
    history = model.fit(callbacks=[cp_callback])  # 训练时加入callback记录到history
    

    完整代码:

    import tensorflow as tf
    import os
    
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation="relu"),
        tf.keras.layers.Dense(10, activation="softmax")
    ])
    
    model.compile(optimizer="adam",
                  loss=tf.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=["sparse_categorical_accuracy"])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + ".index"):
        print("********load the model********")
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath=checkpoint_save_path,
        save_weights_only=True,
        save_best_only=True
    )
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5,
                        validation_data=(x_test, y_test),
                        validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    # 第一个运行会生成checkpoint文件夹;再次运行会打印“loat the model”
    

    4. 参数提取,把参数存入文本

    如何查看刚才保存的参数呢?
    model.trainable_variables: 返回模型中可训练的参数

    np.set_printoptions(threshold=超过多少省略显示)
    
    print(model.trainalbel_variables)
    with open('./weights.txt', "r") as f:
        for v in model.trainalbel_variables:
            f.write(str(v.name) + '\n')
            f.write(str(v.shape) + '\n')
            f.write(str(v.numpy()) + '\n')
    

    运行结束后,会生成一个weights.txt的文件,里面内容如下(只截取了一部分):

    sequential/dense/kernel:0
    (784, 128)
    [[-2.17313766e-02  9.63861495e-03  2.45406926e-02 -2.05611363e-02
      -7.95493349e-02  7.36297593e-02 -1.00414529e-02 -2.20061354e-02
      -2.01823190e-02  4.14270088e-02  1.25524700e-02 -3.86570469e-02
       4.22033072e-02  2.80330330e-02  9.59490985e-03  3.71083617e-04
      -2.30173916e-02 -4.57206331e-02 -5.82779385e-02 -2.92782038e-02
      -6.12219647e-02 -2.66422592e-02  5.13606444e-02 -6.69592693e-02
       6.71493262e-03 -1.25512704e-02  5.38410172e-02  5.32102808e-02
      -2.83893384e-02 -4.53878976e-02  6.74401000e-02 -4.15585935e-03
       7.46259093e-03  5.67617640e-02  9.12702084e-03  4.33859974e-02
       8.93525779e-04 -2.85942480e-02 -2.26105154e-02 -1.89675465e-02
       4.66749594e-02  4.78440300e-02  3.05311531e-02 -6.91696778e-02
    

    5. acc/loss可视化

    hitsory=model.fit中,已经保留了很多信息:

    • 训练集Loss: loss
    • 测试集loss: val_loss
    • 训练集准确率: sparse_categorical_accuracy
    • 测试集准确率:val_sparse_categorical_accuracy
      在之前的代码基础上加入matplotlib相关的代码即可:
    import tensorflow as tf
    import os
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    np.set_printoptions(threshold=np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation="relu"),
        tf.keras.layers.Dense(10, activation="softmax")
    ])
    
    model.compile(optimizer="adam",
                  loss=tf.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=["sparse_categorical_accuracy"])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + ".index"):
        print("********load the model********")
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(
        filepath=checkpoint_save_path,
        save_weights_only=True,
        save_best_only=True
    )
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5,
                        validation_data=(x_test, y_test),
                        validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    print(model.trainable_variables)
    with open("./weights.txt", "w") as f:
        for v in model.trainable_variables:
            f.write(str(v.name) + "\n")
            f.write(str(v.shape) + "\n")
            f.write(str(v.numpy()) + "\n")
    
    acc = history.history["sparse_categorical_accuracy"]
    val_acc = history.history["val_sparse_categorical_accuracy"]
    loss = history.history["loss"]
    val_loss = history.history["val_loss"]
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label="training accuracy")
    plt.plot(val_acc, label="validation accuracy")
    plt.title("training and validation accuracy")
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label="training loss")
    plt.plot(val_loss, label="validation loss")
    plt.title("training and validation loss")
    plt.legend()
    plt.show()
    

    结果如下:


    myplot.png

    6. 应用程序,给图识物

    那如何识别一张自己手写的图片上的数字呢?
    使用predict(输入特征, batch_size=整数), 返回前向传播的结果
    使用步骤如下:

    • 复现模型: model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(128, activation="relu"),
      tf.keras.layers.Dense(10, activation="softmax")
      ])
    • 加载参数: model.load_weights(model_save_path)
    • 预测结果: result = model.predict(x_predict)

    相关文章

      网友评论

          本文标题:tensorflow功能扩展

          本文链接:https://www.haomeiwen.com/subject/ygoiahtx.html