美文网首页
计算机安全学实践性作业2

计算机安全学实践性作业2

作者: Holy_8e2c | 来源:发表于2018-03-26 23:31 被阅读0次
    # 第一
    # 生成一个与N互素的列表
    def CommonFactor(a, b):
        if a < b:
            t = a
            a = b
            b = t
        while (a % b):
            t = b
            b = a % b
            a = t
        return b
    # 判断是否为素数
    def isprimeOne():
        count = 1
        while (count):
            n = int(input("输入一个质数:"))
            for i in range(2, n):
                if n % i == 0:
                    print(" %d 这不是一个质数!" % n)
                    break
            else:
                return n
    
    
    
    # 判断是否存在逆元
    def is_inverse(list, n):
        mark = 1
        for i in range(0, len(list)):
            count = 1
            for j in range(0, len(list)):
                if ((list[i] * list[j]) % n == 1):
                    count = 0
                    print("%s存在逆元%s" % (list[i], list[j]), end="   ")
            if count:
                print("%s不存在逆元" % (list[i]), end="   ")
                mark = 0
        print()
        if (mark):
            print("任何元素都有逆元")
        return mark
    
    
    # 判断运算是否封闭
    def is_closed(list, n):
        mark = 1
        for i in range(0, len(list)):
            for j in range(0, len(list)):
                count = 0
                for k in range(0, len(list)):
                    if ((list[i] * list[j]) % n == list[k]):
                        count = 1
                        num = list[k]
                if count:
                    print("%s*%s封闭值为%s" % (list[i], list[j], num))
                else:
                    print("%s*%s不封闭" % (list[i], list[j]))
                    mark = 0
        return mark
    
    
    # 主函数
    def main():
        p = isprimeOne()
        count = 1
        while (count):
            q = isprimeOne()
            if not q == p:
                count = 0
            else:
                print("与第一个质数相同,请重新输入")
        n = p * q
        list = []
        for i in range(1, n):
            k = CommonFactor(i, n)
            if k == 1:
                list.append(i)
        for i in range(0, len(list)):
            print(list[i], end="  ")
        print()
        a = is_inverse(list, n)
        b = is_closed(list, n)
        if a == 1 and b == 1:
            print("任意元素都有逆元且运算封闭,成群")
            print("群元素有%s个" % (len(list)))
        elif a == 0:
            print("存在元素没有逆元,不成群")
        elif b == 0:
            print("运算不封闭,不成群")
    
    
    main()
    
    # 第二
    # !/usr/bin/env python
    #
    
    
    
    class mycrypt():
        def __init__(self, key):
            self.key = key
            self.mode = AES.MODE_CBC
    
        def myencrypt(self, text):
            cryptor = AES.new(key, self.mode)
            length = 16
            count = text.count('')
            if count < length:
                add = (length - count) + 1
                text = text + (' ' * add)
            elif count > length:
                add = (length - (count % length)) + 1
                text = text + (' ' * add)
            self.ciphertext = cryptor.encrypt(text)
            return self.ciphertext
    
        def mydecrypt(self, text):
            cryptor = AES.new(key, self.mode)
            plain_text = cryptor.decrypt(text)
            return plain_text
    
    
    text = "98789khjsajfilahfpoiwufipoasufipo"
    key = "9878*(&^^&)0LLIu(*&^))#$@!KJLKJj"
    en = mycrypt(key)
    entext = en.myencrypt(text)
    print
    entext
    
    detext = en.mydecrypt(entext).rstrip()
    print
    detext
    
    
    import os
    import sys
    import math
    
    
    class AES(object):
    
        keySize = dict(SIZE_128=16, SIZE_192=24, SIZE_256=32)
    
    
        sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
                0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
                0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
                0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
                0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
                0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
                0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
                0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
                0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
                0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
                0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
                0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
                0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
                0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
                0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
                0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
                0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
                0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
                0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
                0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
                0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
                0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
                0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
                0x54, 0xbb, 0x16]
    
        # Rijndael Inverted S-box
        rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
                 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
                 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54,
                 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
                 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
                 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8,
                 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
                 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
                 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab,
                 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
                 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
                 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
                 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
                 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
                 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d,
                 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
                 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
                 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
                 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
                 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
                 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
                 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b,
                 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
                 0x21, 0x0c, 0x7d]
    
        def getSBoxValue(self, num):
            """Retrieves a given S-Box Value"""
            return self.sbox[num]
    
        def getSBoxInvert(self, num):
            """Retrieves a given Inverted S-Box Value"""
            return self.rsbox[num]
    
        def rotate(self, word):
            """ Rijndael's key schedule rotate operation.
    
            Rotate a word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d
            Word is an char list of size 4 (32 bits overall).
            """
            return word[1:] + word[:1]
    
        # Rijndael Rcon
        Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
                0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
                0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
                0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
                0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
                0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
                0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
                0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
                0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
                0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
                0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
                0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
                0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
                0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
                0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
                0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
                0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
                0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
                0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
                0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
                0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
                0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
                0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
                0xe8, 0xcb]
    
        def getRconValue(self, num):
            """Retrieves a given Rcon Value"""
            return self.Rcon[num]
    
        def core(self, word, iteration):
            """Key schedule core."""
            # rotate the 32-bit word 8 bits to the left
            word = self.rotate(word)
            # apply S-Box substitution on all 4 parts of the 32-bit word
            for i in range(4):
                word[i] = self.getSBoxValue(word[i])
            # XOR the output of the rcon operation with i to the first part
            # (leftmost) only
            word[0] = word[0] ^ self.getRconValue(iteration)
            return word
    
        def expandKey(self, key, size, expandedKeySize):
            """Rijndael's key expansion.
    
            Expands an 128,192,256 key into an 176,208,240 bytes key
    
            expandedKey is a char list of large enough size,
            key is the non-expanded key.
            """
            # current expanded keySize, in bytes
            currentSize = 0
            rconIteration = 1
            expandedKey = [0] * expandedKeySize
    
            # set the 16, 24, 32 bytes of the expanded key to the input key
            for j in range(size):
                expandedKey[j] = key[j]
            currentSize += size
    
            while currentSize < expandedKeySize:
                # assign the previous 4 bytes to the temporary value t
                t = expandedKey[currentSize - 4:currentSize]
    
                # every 16,24,32 bytes we apply the core schedule to t
                # and increment rconIteration afterwards
                if currentSize % size == 0:
                    t = self.core(t, rconIteration)
                    rconIteration += 1
                # For 256-bit keys, we add an extra sbox to the calculation
                if size == self.keySize["SIZE_256"] and ((currentSize % size) == 16):
                    for l in range(4): t[l] = self.getSBoxValue(t[l])
    
                # We XOR t with the four-byte block 16,24,32 bytes before the new
                # expanded key.  This becomes the next four bytes in the expanded
                # key.
                for m in range(4):
                    expandedKey[currentSize] = expandedKey[currentSize - size] ^ \
                                               t[m]
                    currentSize += 1
    
            return expandedKey
    
        def addRoundKey(self, state, roundKey):
            """Adds (XORs) the round key to the state."""
            for i in range(16):
                state[i] ^= roundKey[i]
            return state
    
        def createRoundKey(self, expandedKey, roundKeyPointer):
            """Create a round key.
            Creates a round key from the given expanded key and the
            position within the expanded key.
            """
            roundKey = [0] * 16
            for i in range(4):
                for j in range(4):
                    roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j]
            return roundKey
    
        def galois_multiplication(self, a, b):
            """Galois multiplication of 8 bit characters a and b."""
            p = 0
            for counter in range(8):
                if b & 1: p ^= a
                hi_bit_set = a & 0x80
                a <<= 1
                # keep a 8 bit
                a &= 0xFF
                if hi_bit_set:
                    a ^= 0x1b
                b >>= 1
            return p
    
        #
        # substitute all the values from the state with the value in the SBox
        # using the state value as index for the SBox
        #
        def subBytes(self, state, isInv):
            if isInv:
                getter = self.getSBoxInvert
            else:
                getter = self.getSBoxValue
            for i in range(16): state[i] = getter(state[i])
            return state
    
        # iterate over the 4 rows and call shiftRow() with that row
        def shiftRows(self, state, isInv):
            for i in range(4):
                state = self.shiftRow(state, i * 4, i, isInv)
            return state
    
        # each iteration shifts the row to the left by 1
        def shiftRow(self, state, statePointer, nbr, isInv):
            for i in range(nbr):
                if isInv:
                    state[statePointer:statePointer + 4] = \
                        state[statePointer + 3:statePointer + 4] + \
                        state[statePointer:statePointer + 3]
                else:
                    state[statePointer:statePointer + 4] = \
                        state[statePointer + 1:statePointer + 4] + \
                        state[statePointer:statePointer + 1]
            return state
    
        # galois multiplication of the 4x4 matrix
        def mixColumns(self, state, isInv):
            # iterate over the 4 columns
            for i in range(4):
                # construct one column by slicing over the 4 rows
                column = state[i:i + 16:4]
                # apply the mixColumn on one column
                column = self.mixColumn(column, isInv)
                # put the values back into the state
                state[i:i + 16:4] = column
    
            return state
    
        # galois multiplication of 1 column of the 4x4 matrix
        def mixColumn(self, column, isInv):
            if isInv:
                mult = [14, 9, 13, 11]
            else:
                mult = [2, 1, 1, 3]
            cpy = list(column)
            g = self.galois_multiplication
    
            column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
                        g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
            column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
                        g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
            column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
                        g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
            column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
                        g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
            return column
    
        # applies the 4 operations of the forward round in sequence
        def aes_round(self, state, roundKey):
            state = self.subBytes(state, False)
            state = self.shiftRows(state, False)
            state = self.mixColumns(state, False)
            state = self.addRoundKey(state, roundKey)
            return state
    
        # applies the 4 operations of the inverse round in sequence
        def aes_invRound(self, state, roundKey):
            state = self.shiftRows(state, True)
            state = self.subBytes(state, True)
            state = self.addRoundKey(state, roundKey)
            state = self.mixColumns(state, True)
            return state
    
        # Perform the initial operations, the standard round, and the final
        # operations of the forward aes, creating a round key for each round
        def aes_main(self, state, expandedKey, nbrRounds):
            state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
            i = 1
            while i < nbrRounds:
                state = self.aes_round(state,
                                       self.createRoundKey(expandedKey, 16 * i))
                i += 1
            state = self.subBytes(state, False)
            state = self.shiftRows(state, False)
            state = self.addRoundKey(state,
                                     self.createRoundKey(expandedKey, 16 * nbrRounds))
            return state
    
        # Perform the initial operations, the standard round, and the final
        # operations of the inverse aes, creating a round key for each round
        def aes_invMain(self, state, expandedKey, nbrRounds):
            state = self.addRoundKey(state,
                                     self.createRoundKey(expandedKey, 16 * nbrRounds))
            i = nbrRounds - 1
            while i > 0:
                state = self.aes_invRound(state,
                                          self.createRoundKey(expandedKey, 16 * i))
                i -= 1
            state = self.shiftRows(state, True)
            state = self.subBytes(state, True)
            state = self.addRoundKey(state, self.createRoundKey(expandedKey, 0))
            return state
    
        # encrypts a 128 bit input block against the given key of size specified
        def encrypt(self, iput, key, size):
            output = [0] * 16
            # the number of rounds
            nbrRounds = 0
            # the 128 bit block to encode
            block = [0] * 16
            # set the number of rounds
            if size == self.keySize["SIZE_128"]:
                nbrRounds = 10
            elif size == self.keySize["SIZE_192"]:
                nbrRounds = 12
            elif size == self.keySize["SIZE_256"]:
                nbrRounds = 14
            else:
                return None
    
            # the expanded keySize
            expandedKeySize = 16 * (nbrRounds + 1)
    
            # Set the block values, for the block:
            # a0,0 a0,1 a0,2 a0,3
            # a1,0 a1,1 a1,2 a1,3
            # a2,0 a2,1 a2,2 a2,3
            # a3,0 a3,1 a3,2 a3,3
            # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
            #
            # iterate over the columns
            for i in range(4):
                # iterate over the rows
                for j in range(4):
                    block[(i + (j * 4))] = iput[(i * 4) + j]
    
            # expand the key into an 176, 208, 240 bytes key
            # the expanded key
            expandedKey = self.expandKey(key, size, expandedKeySize)
    
            # encrypt the block using the expandedKey
            block = self.aes_main(block, expandedKey, nbrRounds)
    
            # unmap the block again into the output
            for k in range(4):
                # iterate over the rows
                for l in range(4):
                    output[(k * 4) + l] = block[(k + (l * 4))]
            return output
    
        # decrypts a 128 bit input block against the given key of size specified
        def decrypt(self, iput, key, size):
            output = [0] * 16
            # the number of rounds
            nbrRounds = 0
            # the 128 bit block to decode
            block = [0] * 16
            # set the number of rounds
            if size == self.keySize["SIZE_128"]:
                nbrRounds = 10
            elif size == self.keySize["SIZE_192"]:
                nbrRounds = 12
            elif size == self.keySize["SIZE_256"]:
                nbrRounds = 14
            else:
                return None
    
            # the expanded keySize
            expandedKeySize = 16 * (nbrRounds + 1)
    
            # Set the block values, for the block:
            # a0,0 a0,1 a0,2 a0,3
            # a1,0 a1,1 a1,2 a1,3
            # a2,0 a2,1 a2,2 a2,3
            # a3,0 a3,1 a3,2 a3,3
            # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
    
            # iterate over the columns
            for i in range(4):
                # iterate over the rows
                for j in range(4):
                    block[(i + (j * 4))] = iput[(i * 4) + j]
            # expand the key into an 176, 208, 240 bytes key
            expandedKey = self.expandKey(key, size, expandedKeySize)
            # decrypt the block using the expandedKey
            block = self.aes_invMain(block, expandedKey, nbrRounds)
            # unmap the block again into the output
            for k in range(4):
                # iterate over the rows
                for l in range(4):
                    output[(k * 4) + l] = block[(k + (l * 4))]
            return output
    
    
    class AESModeOfOperation(object):
        '''Handles AES with plaintext consistingof multiple blocks.
        Choice of block encoding modes:  OFT, CFB, CBC
        '''
        # Very annoying code:  all is for an object, but no state is kept!
        # Should just be plain functions in an AES_BlockMode module.
        aes = AES()
    
        # structure of supported modes of operation
        modeOfOperation = dict(OFB=0, CFB=1, CBC=2)
    
        # converts a 16 character string into a number array
        def convertString(self, string, start, end, mode):
            if end - start > 16: end = start + 16
            if mode == self.modeOfOperation["CBC"]:
                ar = [0] * 16
            else:
                ar = []
    
            i = start
            j = 0
            while len(ar) < end - start:
                ar.append(0)
            while i < end:
                ar[j] = ord(string[i])
                j += 1
                i += 1
            return ar
    
        # Mode of Operation Encryption
        # stringIn - Input String
        # mode - mode of type modeOfOperation
        # hexKey - a hex key of the bit length size
        # size - the bit length of the key
        # hexIV - the 128 bit hex Initilization Vector
        def encrypt(self, stringIn, mode, key, size, IV):
            if len(key) % size:
                return None
            if len(IV) % 16:
                return None
            # the AES input/output
            plaintext = []
            iput = [0] * 16
            output = []
            ciphertext = [0] * 16
            # the output cipher string
            cipherOut = []
            # char firstRound
            firstRound = True
            if stringIn != None:
                for j in range(int(math.ceil(float(len(stringIn)) / 16))):
                    start = j * 16
                    end = j * 16 + 16
                    if end > len(stringIn):
                        end = len(stringIn)
                    plaintext = self.convertString(stringIn, start, end, mode)
                    # print 'PT@%s:%s' % (j, plaintext)
                    if mode == self.modeOfOperation["CFB"]:
                        if firstRound:
                            output = self.aes.encrypt(IV, key, size)
                            firstRound = False
                        else:
                            output = self.aes.encrypt(iput, key, size)
                        for i in range(16):
                            if len(plaintext) - 1 < i:
                                ciphertext[i] = 0 ^ output[i]
                            elif len(output) - 1 < i:
                                ciphertext[i] = plaintext[i] ^ 0
                            elif len(plaintext) - 1 < i and len(output) < i:
                                ciphertext[i] = 0 ^ 0
                            else:
                                ciphertext[i] = plaintext[i] ^ output[i]
                        for k in range(end - start):
                            cipherOut.append(ciphertext[k])
                        iput = ciphertext
                    elif mode == self.modeOfOperation["OFB"]:
                        if firstRound:
                            output = self.aes.encrypt(IV, key, size)
                            firstRound = False
                        else:
                            output = self.aes.encrypt(iput, key, size)
                        for i in range(16):
                            if len(plaintext) - 1 < i:
                                ciphertext[i] = 0 ^ output[i]
                            elif len(output) - 1 < i:
                                ciphertext[i] = plaintext[i] ^ 0
                            elif len(plaintext) - 1 < i and len(output) < i:
                                ciphertext[i] = 0 ^ 0
                            else:
                                ciphertext[i] = plaintext[i] ^ output[i]
                        for k in range(end - start):
                            cipherOut.append(ciphertext[k])
                        iput = output
                    elif mode == self.modeOfOperation["CBC"]:
                        for i in range(16):
                            if firstRound:
                                iput[i] = plaintext[i] ^ IV[i]
                            else:
                                iput[i] = plaintext[i] ^ ciphertext[i]
                        # print 'IP@%s:%s' % (j, iput)
                        firstRound = False
                        ciphertext = self.aes.encrypt(iput, key, size)
                        # always 16 bytes because of the padding for CBC
                        for k in range(16):
                            cipherOut.append(ciphertext[k])
            return mode, len(stringIn), cipherOut
    
        # Mode of Operation Decryption
        # cipherIn - Encrypted String
        # originalsize - The unencrypted string length - required for CBC
        # mode - mode of type modeOfOperation
        # key - a number array of the bit length size
        # size - the bit length of the key
        # IV - the 128 bit number array Initilization Vector
        def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
            # cipherIn = unescCtrlChars(cipherIn)
            if len(key) % size:
                return None
            if len(IV) % 16:
                return None
            # the AES input/output
            ciphertext = []
            iput = []
            output = []
            plaintext = [0] * 16
            # the output plain text character list
            chrOut = []
            # char firstRound
            firstRound = True
            if cipherIn != None:
                for j in range(int(math.ceil(float(len(cipherIn)) / 16))):
                    start = j * 16
                    end = j * 16 + 16
                    if j * 16 + 16 > len(cipherIn):
                        end = len(cipherIn)
                    ciphertext = cipherIn[start:end]
                    if mode == self.modeOfOperation["CFB"]:
                        if firstRound:
                            output = self.aes.encrypt(IV, key, size)
                            firstRound = False
                        else:
                            output = self.aes.encrypt(iput, key, size)
                        for i in range(16):
                            if len(output) - 1 < i:
                                plaintext[i] = 0 ^ ciphertext[i]
                            elif len(ciphertext) - 1 < i:
                                plaintext[i] = output[i] ^ 0
                            elif len(output) - 1 < i and len(ciphertext) < i:
                                plaintext[i] = 0 ^ 0
                            else:
                                plaintext[i] = output[i] ^ ciphertext[i]
                        for k in range(end - start):
                            chrOut.append(chr(plaintext[k]))
                        iput = ciphertext
                    elif mode == self.modeOfOperation["OFB"]:
                        if firstRound:
                            output = self.aes.encrypt(IV, key, size)
                            firstRound = False
                        else:
                            output = self.aes.encrypt(iput, key, size)
                        for i in range(16):
                            if len(output) - 1 < i:
                                plaintext[i] = 0 ^ ciphertext[i]
                            elif len(ciphertext) - 1 < i:
                                plaintext[i] = output[i] ^ 0
                            elif len(output) - 1 < i and len(ciphertext) < i:
                                plaintext[i] = 0 ^ 0
                            else:
                                plaintext[i] = output[i] ^ ciphertext[i]
                        for k in range(end - start):
                            chrOut.append(chr(plaintext[k]))
                        iput = output
                    elif mode == self.modeOfOperation["CBC"]:
                        output = self.aes.decrypt(ciphertext, key, size)
                        for i in range(16):
                            if firstRound:
                                plaintext[i] = IV[i] ^ output[i]
                            else:
                                plaintext[i] = iput[i] ^ output[i]
                        firstRound = False
                        if originalsize is not None and originalsize < end:
                            for k in range(originalsize - start):
                                chrOut.append(chr(plaintext[k]))
                        else:
                            for k in range(end - start):
                                chrOut.append(chr(plaintext[k]))
                        iput = ciphertext
            return "".join(chrOut)
    
    
    def append_PKCS7_padding(s):
        """return s padded to a multiple of 16-bytes by PKCS7 padding"""
        numpads = 16 - (len(s) % 16)
        return s + numpads * chr(numpads)
    
    
    def strip_PKCS7_padding(s):
        """return s stripped of PKCS7 padding"""
        if len(s) % 16 or not s:
            raise ValueError("String of len %d can't be PCKS7-padded" % len(s))
        numpads = ord(s[-1])
        if numpads > 16:
            raise ValueError("String ending with %r can't be PCKS7-padded" % s[-1])
        return s[:-numpads]
    
    
    def encryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
        """encrypt `data` using `key`
    
        `key` should be a string of bytes.
    
        returned cipher is a string of bytes prepended with the initialization
        vector.
    
        """
        key = map(ord, key)
        if mode == AESModeOfOperation.modeOfOperation["CBC"]:
            data = append_PKCS7_padding(data)
        keysize = len(key)
        assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
        # create a new iv using random data
        iv = [ord(i) for i in os.urandom(16)]
        moo = AESModeOfOperation()
        (mode, length, ciph) = moo.encrypt(data, mode, key, keysize, iv)
        # With padding, the original length does not need to be known. It's a bad
        # idea to store the original message length.
        # prepend the iv.
        return ''.join(map(chr, iv)) + ''.join(map(chr, ciph))
    
    
    def decryptData(key, data, mode=AESModeOfOperation.modeOfOperation["CBC"]):
        """decrypt `data` using `key`
    
        `key` should be a string of bytes.
    
        `data` should have the initialization vector prepended as a string of
        ordinal values.
        """
    
        key = map(ord, key)
        keysize = len(key)
        assert keysize in AES.keySize.values(), 'invalid key size: %s' % keysize
        # iv is first 16 bytes
        iv = map(ord, data[:16])
        data = map(ord, data[16:])
        moo = AESModeOfOperation()
        decr = moo.decrypt(data, None, mode, key, keysize, iv)
        if mode == AESModeOfOperation.modeOfOperation["CBC"]:
            decr = strip_PKCS7_padding(decr)
        return decr
    
    
    def generateRandomKey(keysize):
        """Generates a key from random data of length `keysize`.
        The returned key is a string of bytes.
        """
        if keysize not in (16, 24, 32):
            emsg = 'Invalid keysize, %s. Should be one of (16, 24, 32).'
            raise ValueError, emsg % keysize
        return os.urandom(keysize)
    
    
    def testStr(cleartext, keysize=16, modeName="CBC"):
        '''Test with random key, choice of mode.'''
        print
        'Random key test', 'Mode:', modeName
        print
        'cleartext:', cleartext
        key = generateRandomKey(keysize)
        print
        'Key:', [ord(x) for x in key]
        mode = AESModeOfOperation.modeOfOperation[modeName]
        cipher = encryptData(key, cleartext, mode)
        print
        'Cipher:', [ord(x) for x in cipher]
        decr = decryptData(key, cipher, mode)
        print
        'Decrypted:', decr
    
    
    if __name__ == "__main__":
        moo = AESModeOfOperation()
        cleartext = "This is a test with several blocks!"
        cypherkey = [143, 194, 34, 208, 145, 203, 230, 143, 177, 246, 97, 206, 145, 92, 255, 84]
        iv = [103, 35, 148, 239, 76, 213, 47, 118, 255, 222, 123, 176, 106, 134, 98, 92]
        mode, orig_len, ciph = moo.encrypt(cleartext, moo.modeOfOperation["CBC"],
                                           cypherkey, moo.aes.keySize["SIZE_128"], iv)
        print
        'm=%s, ol=%s (%s), ciph=%s' % (mode, orig_len, len(cleartext), ciph)
        decr = moo.decrypt(ciph, orig_len, mode, cypherkey,
                           moo.aes.keySize["SIZE_128"], iv)
        print
        decr
        testStr(cleartext, 16, "CBC")
    

    相关文章

      网友评论

          本文标题:计算机安全学实践性作业2

          本文链接:https://www.haomeiwen.com/subject/yiidcftx.html