美文网首页Android知识程序员Android开发经验谈
生产者和消费者模式在Android中的应用

生产者和消费者模式在Android中的应用

作者: 袋袋_Deken | 来源:发表于2017-08-08 15:47 被阅读0次

    What

    所谓生产者消费者模式,就是一个地方无脑生产,一个地方无脑消费,通过一个中间缓冲区建立的一种模式。这样的解耦是不是很多人所向往的,而解耦的关键是如何使用中间的缓冲区。生活中的例子也有很多,像卖手机的,他们只负责生产,而我们只负责消费,中间的缓冲区便是他们的库存。再比如邮局,我们只负责写信,收信人只负责收信,中间的缓冲区便是邮局。还有,坐地铁,上班打卡。。。生活中处处充满着这个模型。

    生产者和消费者模型

    有了生产和消费,但是世界永远唯一不变的是变化,于是就产生了各种问题,生产者和消费者的量不一致,时间的把控,效率的高低,都是问题出现的因素。在美丽的大Android中很多地方也运用到了这个模型,同样的,也会出现这个问题,那么Android中是如何处理这些问题的呢?他的缓冲区是如何做的呢?

    How

    首先,看看Android中常用到这个模型的有哪些应用?

    曾经面试的问题,Android中有几种方式可以在子线程中更新UI?
    初学者看到这里,应该会自豪的说:

    1,runOnUiThread
    2,view.post()
    3,handler
    
    runOnUiThread view.post()

    前两种方式的源码 其内部都实现了mHandler.post(action)方法,说明这三种方式其实,就是一种方式,通过Handler机制实现,关于Handler机制实现,请听下回分解。

    另外还有最熟悉的Toast

    Toast内部源码

    其内部也是Handler:mHandler.obtainMessage(0, windowToken).sendToTarget();

    Why

    内部的实现都是Hander机制,其实Android消息机制的核心便是Handler机制,而实现消息机制模型就是生产者消费者模型。那么,Handler机制是如何实现的呢?

    查看源码一路追踪,拨开层层迷雾,可以在MessageQueue,Message中查看得到生产者消费者模型的影子,Message就是生产出来的事物,而MessageQueue实现了生产和消费操作功能。

    MeesageQueue,具体查看代码如下:
    enqueueMessage()

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    next()

     Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
    
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
    
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
    
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
    
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
    
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    

    分析如下:

    生产物

    Message链表.png

    生产者:

     enqueueMessage()  生产的对象为Message
              
           if(beforeMessag==null||when=0||when<beforeMessag.when){
                        initMessage;
           }else{//新消息,是入队操作
                    prevMsg.next=curMsg;
           }
    
            Message p=Message mMessage;
            Message prev;
            loop  //循环取出当前链表最后一个message,赋值给prev;
              ->prev =p;
              ->p=p.next;
            //赋值给Next
            msg.next=p=null;
            prev.next =msg;
    

    消费者:

    next()
        loop
           ->Message prevMsg=null; Message msg=mMessages;
                 //将下一个Msg上移,for loop 将剩下来的msg一一往前移动
           ->   if(prevMsg!=null) prevMsg.next=msg.next;
           ->     else mMessages=msg.next;//   主链表上移一个msg
           ->    return msg;
    

    1,enqueueMessage() 为生产线程执行,入队一个Message ,return true。

    2,next() 为消费线程执行,出队:在Looper.loop()中不断取, 而在next()中也是loop 只要取到了便return msg 否则wait。next加了一个同步锁,保证了与enqueue的互斥。enqueue 同样也添加了同步锁,从而保证了与next的互斥:将message添加到Message链表中去,判断,如果出现阻塞了,需要进行唤醒操作。妥妥的生产者消费者模型。

    总结

    生产者和消费者的精髓是:

    不同线程操作同一对象的不同方法,但是要保持其互斥,也不能出现死锁的情况,条件满足就通知其他等待的线程 ,条件不满足,就休眠等待。

    在Thread-1的生产者只负责生产,在Thread-2的消费者则只负责消费,操作互斥,当生产者达到上限则进行等待,反之消费者达到上限所有线程就等待。

    【引用】
    1,模式解释灵感:戳这里看大神的解释
    2,MessageQueue源码解析
    3,Toast源码解析,艾玛,和我看的顺序一样一样的

    相关文章

      网友评论

        本文标题:生产者和消费者模式在Android中的应用

        本文链接:https://www.haomeiwen.com/subject/ykjolxtx.html