美文网首页大数据,机器学习,人工智能
Ubuntu 16.04 安装 NVIDIA 驱动指引_9.0

Ubuntu 16.04 安装 NVIDIA 驱动指引_9.0

作者: 施瓦辛格777 | 来源:发表于2018-09-11 23:42 被阅读2次

    Ubuntu 16.04 安装 NVIDIA 驱动指引_9.0

    原文档来自这里:https://cloud.tencent.com/document/product/560/8048
    我按照步骤操作一遍不成功,自己搞定了记录一下。

    前言

    NVIDIA驱动包含两个部分一个是CUDA(具体是个啥,不清楚,必须安装上就对了),另一个是具体的驱动。
    如果以deb包的形式呈现,那么就是如下两个包:

    -rw-rw-r-- 1 ubuntu ubuntu 1212738714 Sep 23  2017 cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
    -rw-rw-r-- 1 ubuntu ubuntu  102497768 May 18 09:45 nvidia-diag-driver-local-repo-ubuntu1604-384.145_1.0-1_amd64.deb
    

    为什么要安装9.0版本呢?tensorflow指明要安装9.0以上版本,我就选了9.2的安装,安装好了训练时报错,找9.0的库文件;这不又折回来安装9.0版本的了。

    安装CUDA Toolkit 9.0

    sudo apt-get update
    sudo DEBIAN_FRONTEND=noninteractive apt-get upgrade -y -o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold"
    sudo reboot
    

    需要从这里进行下载
    https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=deblocal
    下载完成后

    sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
    sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
    sudo apt-get update
    sudo apt-get install cuda
    

    需要注意的是这种安装方法,安装完成后不能使用nvcc --version。不过问题不大。

    修改环境变量

    在终端打开并修改.bashrc文件

    vim ~/.bashrc
    

    将如下内容添加到.bashrc文件末尾:

    export CUDA_HOME=/usr/local/cuda-9.0
    export LD_LIBRARY_PATH=${CUDA_HOME}/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    export PATH=${CUDA_HOME}/bin:${PATH}
    export CUPIT_LIB_PATH=${CUDA_HOME}/extras/CUPTI/lib64
    export LD_LIBRARY_PATH=${CUPIT_LIB_PATH}:$LD_LIBRARY_PATH
    

    查看安装结果

    一定要看到如下结果后再进行

    ubuntu@VM-0-13-ubuntu:~$ nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2017 NVIDIA Corporation
    Built on Fri_Sep__1_21:08:03_CDT_2017
    Cuda compilation tools, release 9.0, V9.0.176
    ubuntu@VM-0-13-ubuntu:~$ 
    

    安装NVIDIA驱动

    在这里选择适合自己的驱动https://www.nvidia.com/Download/Find.aspx,注意CUDA版本要和上面安装的一致(比如这里使用是9.0版本)

    sudo dpkg -i nvidia-diag-driver-local-repo-ubuntu1604-384.145_1.0-1_amd64.deb
    

    已经包含cuda-command-line-tools不需要再使用正面命令进行安装了

    sudo apt-get install cuda-command-line-tools
    
    sudo apt-get update
    sudo reboot
    

    重启之后查看安装结果

    ubuntu@VM-0-13-ubuntu:~$ nvidia-smi
    Tue Sep 11 15:58:11 2018
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 396.37                 Driver Version: 396.37                    |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  Tesla P40           On   | 00000000:00:06.0 Off |                    0 |
    | N/A   22C    P8     9W / 250W |      0MiB / 22919MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                       GPU Memory |
    |  GPU       PID   Type   Process name                             Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    ubuntu@VM-0-13-ubuntu:~$ ls
    

    本节来自:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/

    安装cuDNN

    下载地址:https://developer.nvidia.com/cudnn
    cuDNN需要安装三个deb包分别是Runtime LibraryDeveloper Library以及Code Samples

    -rw-rw-r-- 1 ubuntu ubuntu  122730426 Jul 31 20:34 libcudnn7_7.2.1.38-1+cuda9.0_amd64.deb
    -rw-rw-r-- 1 ubuntu ubuntu  112867596 Jul 31 20:34 libcudnn7-dev_7.2.1.38-1+cuda9.0_amd64.deb
    -rw-rw-r-- 1 ubuntu ubuntu    4909666 Jul 31 20:34 libcudnn7-doc_7.2.1.38-1+cuda9.0_amd64.deb
    

    Navigate to your <cudnnpath> directory containing cuDNN Debian file.
    Install the runtime library, for example:

    sudo dpkg -i libcudnn7_7.2.1.38-1+cuda9.0_amd64.deb
    

    Install the developer library, for example:

    sudo dpkg -i libcudnn7-dev_7.2.1.38-1+cuda9.0_amd64.deb
    

    Install the code samples and the cuDNN Library User Guide, for example:

    sudo dpkg -i libcudnn7-doc_7.2.1.38-1+cuda9.0_amd64.deb
    

    校验是否安装成功

    To verify that cuDNN is installed and is running properly, compile the mnistCUDNN sample located in the /usr/src/cudnn_samples_v7 directory in the debian file.

    1. Copy the cuDNN sample to a writable path.
    $cp -r /usr/src/cudnn_samples_v7/ $HOME
    
    1. Go to the writable path.
    $ cd  $HOME/cudnn_samples_v7/mnistCUDNN
    
    1. Compile the mnistCUDNN sample.
    $ make clean && make
    
    1. Run the mnistCUDNN sample.
    $ ./mnistCUDNN
    

    If cuDNN is properly installed and running on your Linux system, you will see a message similar to the following:

    Test passed!
    

    本节来源:https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

    相关文章

      网友评论

        本文标题:Ubuntu 16.04 安装 NVIDIA 驱动指引_9.0

        本文链接:https://www.haomeiwen.com/subject/yknpgftx.html