1.几种同步方法的区别
lock和Monitor是.NET用一个特殊结构实现的,Monitor对象是完全托管的、完全可移植的,并且在操作系统资源要求方 面可能更为有效,同步速度较快,但不能跨进程同步。lock(Monitor.Enter和Monitor.Exit方法的封装),主要作用是锁定临界区,使临 界区代码只能被获得锁的线程执行。Monitor.Wait和Monitor.Pulse用于线程同步,类似信号操作,个人感觉使用比较复杂,容易造成死 锁。 互斥体Mutex和事件对象EventWaitHandler属于内核对象,利用内核对象进行线程同步,线程必须要在用户模式和内核模 式间切换,所以一般效率很低,但利用互斥对象和事件对象这样的内核对象,可以在多个进程中的各个线程间进行同步。 互斥体Mutex类似于一个接力棒,拿到接力棒的线程才可以开始跑,当然接力棒一次只属于一个线程(Thread Affinity),如果这个线程不释放接力棒(Mutex.ReleaseMutex),那么没办法,其他所有需要接力棒运行的线程都知道能等着看热 闹。 EventWaitHandle 类允许线程通过发信号互相通信。 通常,一个或多个线程在 EventWaitHandle 上阻止,直到一个未阻止的线程调用 Set 方法,以释放一个或多个被阻止的线程。
2.什么时候需要锁定
首先要理解锁定是解决竞争条件的,也就是多个线程同时访问某个资源,造成意想不到的结果。比如,最简单的情况是,一个计数器,两个线程 同时加一,后果就是损失了一个计数,但相当频繁的锁定又可能带来性能上的消耗,还有最可怕的情况死锁。那么什么情况下我们需要使用锁,什么情况下不需要 呢?
1)只有共享资源才需要锁定
只有可以被多线程访问的共享资源才需要考虑锁定,比如静态变量,再比如某些缓存中的值,而属于线程内部的变量不需要锁定。
2)多使用lock,少用Mutex
如果你一定要使用锁定,请尽量不要使用内核模块的锁定机制,比如.NET的Mutex,Semaphore,AutoResetEvent和 ManuResetEvent,使用这样的机制涉及到了系统在用户模式和内核模式间的切换,性能差很多,但是他们的优点是可以跨进程同步线程,所以应该清 楚的了解到他们的不同和适用范围。
3)了解你的程序是怎么运行的
实际上在web开发中大多数逻辑都是在单个线程中展开的,一个请求都会在一个单独的线程中处理,其中的大部分变量都是属于这个线程的,根本没有必要考虑锁 定,当然对于ASP.NET中的Application对象中的数据,我们就要考虑加锁了。
4)把锁定交给数据库
数 据库除了存储数据之外,还有一个重要的用途就是同步,数据库本身用了一套复杂的机制来保证数据的可靠和一致性,这就为我们节省了很多的精力。保证了数据源 头上的同步,我们多数的精力就可以集中在缓存等其他一些资源的同步访问上了。通常,只有涉及到多个线程修改数据库中同一条记录时,我们才考虑加锁。
5)业务逻辑对事务和线程安全的要求
这 条是最根本的东西,开发完全线程安全的程序是件很费时费力的事情,在电子商务等涉及金融系统的案例中,许多逻辑都必须严格的线程安全,所以我们不得不牺牲 一些性能,和很多的开发时间来做这方面的工作。而一般的应用中,许多情况下虽然程序有竞争的危险,我们还是可以不使用锁定,比如有的时候计数器少一多一, 对结果无伤大雅的情况下,我们就可以不用去管它。
3.InterLocked类
Interlocked 类提供了同步对多个线程共享的变量的访问的方法。如果该变量位于共享内存中,则不同进程的线程就可以使用该机制。互锁操作是原子的,即整个操作是不能由相 同变量上的另一个互锁操作所中断的单元。这在抢先多线程操作系统中是很重要的,在这样的操作系统中,线程可以在从某个内存地址加载值之后但是在有机会更改 和存储该值之前被挂起。
我们来看一个InterLock.Increment()的例子,该方法以原子的形式递增指定变量并存储结果,示例如下:
```
classInterLockedTest
{
public static Int64 i = 0;
public static voidAdd()
{
for (int i = 0; i < 100000000; i++)
{
Interlocked.Increment(
refInterLockedTest.i);
//InterLockedTest.i = InterLockedTest.i + 1;}
}
public static void Main(string[] args)
{
Thread t1
= new Thread(newThreadStart(InterLockedTest.Add));
Thread t2
= new Thread(newThreadStart(InterLockedTest.Add));
t1.Start();
t2.Start();
t1.Join();
t2.Join();
Console.WriteLine(InterLockedTest.i.ToString());
Console.Read();
}
}
```
输出结果200000000,如果InterLockedTest.Add()方法中用注释掉的语句代替Interlocked.Increment() 方法,结果将不可预知,每次执行结果不同。InterLockedTest.Add()方法保证了加1操作的原子性,功能上相当于自动给加操作使用了 lock锁。同时我们也注意到InterLockedTest.Add()用时比直接用+号加1要耗时的多,所以说加锁资源损耗还是很明显的。
另外InterLockedTest类还有几个常用方法,具体用法可以参考MSDN上的介绍。
4.集合类的同步
.NET在一些集合类,比如Queue、ArrayList、HashTable和Stack,已经提供了一个供lock使用的对象SyncRoot。用 Reflector查看了SyncRoot属性(Stack.SynchRoot略有不同)的源码如下:
```
public virtual objectSyncRoot
{
get
{
if (this._syncRoot == null)
{
//如果_syncRoot和null相等,将new object赋值给 _syncRoot
//Interlocked.CompareExchange方法保证多个线程在使用 syncRoot时是线程安全的 Interlocked.CompareExchange(ref this._syncRoot, new object(), null);
}
return this._syncRoot;
}
}
```
这里要特别注意的是MSDN提到:从头到尾对一个集合进行枚举本质上并不是一个线程安全的过程。即使一个集合已进行同步,其他线程仍可以修改该集合,这将 导致枚举数引发异常。若要在枚举过程中保证线程安全,可以在整个枚举过程中锁定集合,或者捕捉由于其他线程进行的更改而引发的异常。应该使用下面的代码:
Queue使用lock示例
还有一点需要说明的是,集合类提供了一个是和同步相关的方法Synchronized,该 方法返回一个对应的集合类的wrapper类,该类是线程安全的,因为他的大部分方法都用lock关键字进行了同步处理。如HashTable的 Synchronized返回一个新的线程安全的HashTable实例,代码如下:
```
//在多线程环境中只要我们用下面的 方式实例化HashTable就可以了 Hashtable ht = Hashtable.Synchronized(newHashtable());
//以下代码是.NET Framework Class Library实现,增加对 Synchronized的认识 [HostProtection(SecurityAction.LinkDemand, Synchronization=true)]
public staticHashtable Synchronized(Hashtable table)
{
if (table == null)
{
throw new ArgumentNullException("table");
}
return newSyncHashtable(table);
}
//SyncHashtable的几个常用方法,我们可以看到内部实现都加了lock关键字 保证线程安全 public override void Add(object key, objectvalue)
{
lock (this._table.SyncRoot)
{
this._table.Add(key, value);
}
}
public override voidClear()
{
lock (this._table.SyncRoot)
{
this._table.Clear();
}
}
public override void Remove(objectkey)
{
lock (this._table.SyncRoot)
{
this._table.Remove(key);
}
}
```
线程同步是一个非常复杂的话题,这里只是根据公司的一个项目把相关的知识整理出来,作为工作的一种总结。这些同步方法的使用场景是怎样的?究竟有哪些细微 的差别?还有待于进一步的学习和实践。
网友评论