美文网首页
常用R语言绘图展示方式

常用R语言绘图展示方式

作者: wanghaihua888 | 来源:发表于2020-11-27 15:24 被阅读0次

本文转载自:从一套表达和通路数据学习常见的绘图展示方式和报错处理
这个为生信学习和生信作图打造的开源R教程真香!!!

加载需要的包

library(dplyr)library(ggpubr)library(tidyr)library(ggplot2)library(pheatmap)library(ggstatsplot)library(Hmisc)

读入数据

’row.names’里不能有重复的名字 Duplicate row names

expr <- read.table("ehbio.simplier.DESeq2.normalized.symbol.txt", row.names = 1, header = T, sep = "\t")

行名唯一化处理

这里使用make.names转换行名为唯一,实际需要先弄清楚为什么会有重复名字

expr <- read.table("ehbio.simplier.DESeq2.normalized.symbol.txt", row.names = NULL, header = T, sep = "\t")head(expr)##       id untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## 1    FN1    245667.66      427435.1     221687.51      371144.2  240187.24   450103.21   280226.19   376518.23## 2    DCN    212953.14      360796.2     258977.30      408573.1  210002.18   316009.14   225547.39   393843.74## 3  CEMIP     40996.34      137783.1      53813.92       91066.8   62301.12   223111.85   212724.84   157919.47## 4 CCDC80    137229.15      232772.2      86258.13      212237.3  136730.76   226070.89   124634.56   236237.81## 5 IGFBP5     77812.65      288609.2     210628.87      168067.4   96021.74   217439.21   162677.38   168387.36## 6 COL1A1    146450.41      127367.3     152281.50      140861.1   62358.64    53800.47    69160.97    51044.06

有哪些基因名是重复出现的?

expr$id[duplicated(expr$id)]##   [1] "MATR3"      "PKD1P1"     "HSPA14"     "OR7E47P"    "POLR2J3"    "ATXN7"      "TMSB15B"    "LINC-PINT" ##   [9] "TBCE"       "SNX29P2"    "SCO2"       "POLR2J4"    "CCDC39"     "RGS5"       "BMS1P21"    "RF00017"   ##  [17] "GOLGA8M"    "RF00017"    "DNAJC9-AS1" "CYB561D2"   "RF00017"    "IPO5P1"     "RF00017"    "RF00017"   ##  [25] "RF00017"    "SPATA13"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ##  [33] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ##  [41] "RF00019"    "RF00019"    "RF00017"    "RF00017"    "RF00017"    "RF00019"    "BMS1P4"     "RF00019"   ##  [49] "RF00019"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ##  [57] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00019"   ##  [65] "RF00017"    "RF00017"    "RF00017"    "RF00019"    "RF00017"    "RF00017"    "LINC01238"  "RF00017"   ##  [73] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ##  [81] "RF00017"    "RF00017"    "RF02271"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ##  [89] "LINC01297"  "RF00019"    "RF00017"    "RF00012"    "RF00019"    "RF00017"    "RF00017"    "RF00019"   ##  [97] "RF00017"    "RF00017"    "RF00017"    "ZNF503"     "RF00017"    "RF00017"    "RF00017"    "RF00017"   ## [105] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF02271"    "RF00019"    "RF00019"    "RF00017"   ## [113] "RF00019"    "RF02271"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00019"    "RF00019"   ## [121] "RF00017"    "RF00019"    "ITFG2-AS1"  "RF00019"    "RF00019"    "RF00017"    "RF00019"    "RF00017"   ## [129] "RF00017"    "RF00017"    "RF00019"    "RF00017"    "RF00012"    "RF00017"    "RF00017"    "RAET1E-AS1"## [137] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"   ## [145] "RF00012"    "RF02271"    "RF00019"    "LINC01422"  "RF02271"    "RF00017"    "RF00019"    "RF00019"   ## [153] "RF00019"    "RF00019"    "RF00017"    "LINC01481"  "RF00017"    "SNHG28"     "RF00019"    "RF00019"   ## [161] "RF00019"    "RF00019"    "LINC00484"  "LINC00941"  "ALG1L9P"    "RF00017"    "DUXAP8"     "RF00017"   ## [169] "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RF00017"    "RMRP"       "RF00017"    "RF00017"   ## [177] "RF00017"    "RF00017"    "DIABLO"

名字唯一化处理

# 该行命令是展示make.names的效果make.names(c("a", "a", "b", "b", "b"), unique = T)## [1] "a"   "a.1" "b"   "b.1" "b.2"

唯一化之后的名字作为行名字,并去掉原来的第一列

expr_names <- make.names(expr$id, unique = T)rownames(expr) <- expr_namesexpr <- expr[, -1]head(expr)##        untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## FN1       245667.66      427435.1     221687.51      371144.2  240187.24   450103.21   280226.19   376518.23## DCN       212953.14      360796.2     258977.30      408573.1  210002.18   316009.14   225547.39   393843.74## CEMIP      40996.34      137783.1      53813.92       91066.8   62301.12   223111.85   212724.84   157919.47## CCDC80    137229.15      232772.2      86258.13      212237.3  136730.76   226070.89   124634.56   236237.81## IGFBP5     77812.65      288609.2     210628.87      168067.4   96021.74   217439.21   162677.38   168387.36## COL1A1    146450.41      127367.3     152281.50      140861.1   62358.64    53800.47    69160.97    51044.06

热图绘制

library(pheatmap)top6 <- head(expr)pheatmap(top6)
image

提取差异基因绘制热图


读入差异基因列表

de_gene <- read.table("ehbio.DESeq2.all.DE.symbol", row.names = NULL, header = F, sep = "\t")head(de_gene)##        V1                     V2## 1 ARHGEF2 untrt._higherThan_.trt## 2  KCTD12 untrt._higherThan_.trt## 3  SLC6A9 untrt._higherThan_.trt## 4  GXYLT2 untrt._higherThan_.trt## 5   RAB7B untrt._higherThan_.trt## 6   NEK10 untrt._higherThan_.trt

提取Top3 差异的基因

# library(dplyr)top6_de_gene <- de_gene %>% group_by(V2) %>% dplyr::slice(1:3)top6 <- expr[which(rownames(expr) %in% top6_de_gene$V1), ]head(top6)##         untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## KCTD12    4700.79369     3978.0401    4416.15169    4792.34174  936.69481    633.4462   979.77576   641.49582## MAOA       438.54451      452.9934     516.63033     258.73279 4628.00860   4429.7201  4629.66529  3778.17351## ARHGEF2   3025.62334     3105.7830    3094.51304    2909.99043 1395.39850   1441.9916  1464.59769  1501.51509## SPARCL1     58.15705      102.5827      80.00997      82.59042 2220.50867   1750.9879  1374.90745  2194.58930## PER1       170.61639      156.3692     194.97497     123.47689 1728.38117   1230.2575  1120.00650  1333.91208## SLC6A9     360.66314      413.8797     365.47650     443.71982   63.90538     56.8962    86.82929    95.33916

读入样品分组信息作为列注释

metadata <- read.table("sampleFile", header = T, row.names = 1)pheatmap(top6, annotation_col = metadata)
image

按行标准化后展示

pheatmap(top6, annotation_col = metadata, scale = "row", cluster_cols = F)
image

箱线图和统计比较

head(top6)##         untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## KCTD12    4700.79369     3978.0401    4416.15169    4792.34174  936.69481    633.4462   979.77576   641.49582## MAOA       438.54451      452.9934     516.63033     258.73279 4628.00860   4429.7201  4629.66529  3778.17351## ARHGEF2   3025.62334     3105.7830    3094.51304    2909.99043 1395.39850   1441.9916  1464.59769  1501.51509## SPARCL1     58.15705      102.5827      80.00997      82.59042 2220.50867   1750.9879  1374.90745  2194.58930## PER1       170.61639      156.3692     194.97497     123.47689 1728.38117   1230.2575  1120.00650  1333.91208## SLC6A9     360.66314      413.8797     365.47650     443.71982   63.90538     56.8962    86.82929    95.33916

矩阵转置

top6_t <- as.data.frame(t(top6))top6_t##                  KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## untrt_N61311  4700.7937  438.5445 3025.623   58.15705  170.6164 360.66314## untrt_N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## untrt_N080611 4416.1517  516.6303 3094.513   80.00997  194.9750 365.47650## untrt_N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982## trt_N61311     936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## trt_N052611    633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620## trt_N080611    979.7758 4629.6653 1464.598 1374.90745 1120.0065  86.82929## trt_N061011    641.4958 3778.1735 1501.515 2194.58930 1333.9121  95.33916

与样本属性信息合并

top6_t_with_group <- merge(metadata, top6_t, by = 0)head(top6_t_with_group)##       Row.names conditions individual    KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## 1   trt_N052611        trt    N052611  633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620## 2   trt_N061011        trt    N061011  641.4958 3778.1735 1501.515 2194.58930 1333.9121  95.33916## 3   trt_N080611        trt    N080611  979.7758 4629.6653 1464.598 1374.90745 1120.0065  86.82929## 4    trt_N61311        trt     N61311  936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## 5 untrt_N052611      untrt    N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## 6 untrt_N061011      untrt    N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982

修改第一列的列名字

colnames(top6_t_with_group)[1] = "Sample"head(top6_t_with_group)##          Sample conditions individual    KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## 1   trt_N052611        trt    N052611  633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620## 2   trt_N061011        trt    N061011  641.4958 3778.1735 1501.515 2194.58930 1333.9121  95.33916## 3   trt_N080611        trt    N080611  979.7758 4629.6653 1464.598 1374.90745 1120.0065  86.82929## 4    trt_N61311        trt     N61311  936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## 5 untrt_N052611      untrt    N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## 6 untrt_N061011      untrt    N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982

单基因箱线图

library(ggpubr)ggboxplot(top6_t_with_group, x = "conditions", y = "KCTD12", title = "KCTD12", ylab = "Expression", color = "conditions",     palette = "jco")
image
# palette npg, lancet,

多基因箱线图 (combine)

ggboxplot(top6_t_with_group, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", combine = T,     color = "conditions", palette = "jco")
image

多基因箱线图 (merge)

ggboxplot(top6_t_with_group, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", merge = "flip",     color = "conditions", palette = "nature")
image

数据对数转换后绘制箱线图

top6_t_with_group_log = top6_t_with_group %>% purrr::map_if(is.numeric, log1p) %>% as.data.framehead(top6_t_with_group_log)##          Sample conditions individual   KCTD12     MAOA  ARHGEF2  SPARCL1     PER1   SLC6A9## 1   trt_N052611        trt    N052611 6.452752 8.396317 7.274474 7.468506 7.115791 4.058652## 2   trt_N061011        trt    N061011 6.465360 8.237261 7.314896 7.694206 7.196621 4.567875## 3   trt_N080611        trt    N080611 6.888344 8.440456 7.290018 7.226869 7.021982 4.475395## 4    trt_N61311        trt     N61311 6.843425 8.440098 7.241652 7.705942 7.455519 4.172930## 5 untrt_N052611      untrt    N052611 8.288796 6.118083 8.041343 4.640370 5.058595 6.027989## 6 untrt_N061011      untrt    N061011 8.474983 5.559653 7.976249 4.425929 4.824120 6.097444ggboxplot(top6_t_with_group_log, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", merge = "flip",     fill = "conditions", palette = "Set3")
image

用ggplot2实现ggpubr

head(top6_t_with_group)##          Sample conditions individual    KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## 1   trt_N052611        trt    N052611  633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620## 2   trt_N061011        trt    N061011  641.4958 3778.1735 1501.515 2194.58930 1333.9121  95.33916## 3   trt_N080611        trt    N080611  979.7758 4629.6653 1464.598 1374.90745 1120.0065  86.82929## 4    trt_N61311        trt     N61311  936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## 5 untrt_N052611      untrt    N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## 6 untrt_N061011      untrt    N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982

转换为长矩阵

top6_t_with_group_melt <- gather(top6_t_with_group, key = "Gene", value = "Expr", -conditions, -Sample, -individual)top6_t_with_group_melt##           Sample conditions individual    Gene       Expr## 1    trt_N052611        trt    N052611  KCTD12  633.44616## 2    trt_N061011        trt    N061011  KCTD12  641.49582## 3    trt_N080611        trt    N080611  KCTD12  979.77576## 4     trt_N61311        trt     N61311  KCTD12  936.69481## 5  untrt_N052611      untrt    N052611  KCTD12 3978.04011## 6  untrt_N061011      untrt    N061011  KCTD12 4792.34174## 7  untrt_N080611      untrt    N080611  KCTD12 4416.15169## 8   untrt_N61311      untrt     N61311  KCTD12 4700.79369## 9    trt_N052611        trt    N052611    MAOA 4429.72011## 10   trt_N061011        trt    N061011    MAOA 3778.17351## 11   trt_N080611        trt    N080611    MAOA 4629.66529## 12    trt_N61311        trt     N61311    MAOA 4628.00860## 13 untrt_N052611      untrt    N052611    MAOA  452.99337## 14 untrt_N061011      untrt    N061011    MAOA  258.73279## 15 untrt_N080611      untrt    N080611    MAOA  516.63033## 16  untrt_N61311      untrt     N61311    MAOA  438.54451## 17   trt_N052611        trt    N052611 ARHGEF2 1441.99162## 18   trt_N061011        trt    N061011 ARHGEF2 1501.51509## 19   trt_N080611        trt    N080611 ARHGEF2 1464.59769## 20    trt_N61311        trt     N61311 ARHGEF2 1395.39850## 21 untrt_N052611      untrt    N052611 ARHGEF2 3105.78299## 22 untrt_N061011      untrt    N061011 ARHGEF2 2909.99043## 23 untrt_N080611      untrt    N080611 ARHGEF2 3094.51304## 24  untrt_N61311      untrt     N61311 ARHGEF2 3025.62334## 25   trt_N052611        trt    N052611 SPARCL1 1750.98786## 26   trt_N061011        trt    N061011 SPARCL1 2194.58930## 27   trt_N080611        trt    N080611 SPARCL1 1374.90745## 28    trt_N61311        trt     N61311 SPARCL1 2220.50867## 29 untrt_N052611      untrt    N052611 SPARCL1  102.58269## 30 untrt_N061011      untrt    N061011 SPARCL1   82.59042## 31 untrt_N080611      untrt    N080611 SPARCL1   80.00997## 32  untrt_N61311      untrt     N61311 SPARCL1   58.15705## 33   trt_N052611        trt    N052611    PER1 1230.25755## 34   trt_N061011        trt    N061011    PER1 1333.91208## 35   trt_N080611        trt    N080611    PER1 1120.00650## 36    trt_N61311        trt     N61311    PER1 1728.38117## 37 untrt_N052611      untrt    N052611    PER1  156.36920## 38 untrt_N061011      untrt    N061011    PER1  123.47689## 39 untrt_N080611      untrt    N080611    PER1  194.97497## 40  untrt_N61311      untrt     N61311    PER1  170.61639## 41   trt_N052611        trt    N052611  SLC6A9   56.89620## 42   trt_N061011        trt    N061011  SLC6A9   95.33916## 43   trt_N080611        trt    N080611  SLC6A9   86.82929## 44    trt_N61311        trt     N61311  SLC6A9   63.90538## 45 untrt_N052611      untrt    N052611  SLC6A9  413.87971## 46 untrt_N061011      untrt    N061011  SLC6A9  443.71982## 47 untrt_N080611      untrt    N080611  SLC6A9  365.47650## 48  untrt_N61311      untrt     N61311  SLC6A9  360.66314library(ggplot2)ggplot(top6_t_with_group_melt, aes(x = Gene, y = Expr)) + geom_boxplot(aes(color = conditions)) + theme_classic()
image

配色

序列型颜色板适用于从低到高排序明显的数据,浅色数字小,深色数字大。

library(RColorBrewer)display.brewer.all(type = "seq")
image

离散型颜色板适合带“正、负”的,对极值和中间值比较注重的数据。

display.brewer.all(type = "div")
image.gif

分类型颜色板比较适合区分分类型的数据。

display.brewer.all(type = "qual")
image

箱线图加统计分析

my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group, x = "conditions", y = "PER1",          title = "PER1", ylab = "Expression",          add = "jitter",                               # Add jittered points          #add = "dotplot",          fill = "conditions", palette = "Paired") +  stat_compare_means(comparisons = my_comparisons)
image

标记点来源的样本

my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group, x = "conditions", y = "PER1",          title = "PER1", ylab = "Expression",          add = "jitter",                               # Add jittered points          add.params = list(size = 0.1, jitter = 0.2),  # Point size and the amount of jittering          label = "Sample",                # column containing point labels          label.select = list(top.up = 2, top.down = 2),# Select some labels to display          font.label = list(size = 9, face = "italic"), # label font          repel = TRUE,                                 # Avoid label text overplotting          fill = "conditions", palette = "Paired") +  stat_compare_means(comparisons = my_comparisons)
image

修改统计检验方法

my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group_log, x = "conditions", y = "PER1",          title = "PER1", ylab = "Expression",          add = "jitter",                               # Add jittered points          add.params = list(size = 0.1, jitter = 0.2),  # Point size and the amount of jittering          label = "Sample",                # column containing point labels          label.select = list(top.up = 2, top.down = 2),# Select some labels to display          font.label = list(size = 9, face = "italic"), # label font          repel = TRUE,                                 # Avoid label text overplotting          fill = "conditions", palette = "Paired") +  stat_compare_means(comparisons = my_comparisons, method = "t.test", paired = T)
image

小提琴图

ggviolin(top6_t_with_group, x = "conditions", y = c("KCTD12","MAOA"),          ylab = "Expression", merge="flip",          color = "conditions", palette = "jco",           add = "boxplot"          # add = "median_iqr"         )
image

点带图(适合数据比较多时)

ggstripchart(top6_t_with_group, x = "conditions", y = c("KCTD12","MAOA"),          ylab = "Expression", combine=T,          color = "conditions", palette = "jco",           size = 0.1, jitter = 0.2,          add.params = list(color = "gray"),          # add = "boxplot"          add = "median_iqr")
image

通路内基因的比较

pathway <- read.table("h.all.v6.2.symbols.gmt.forGO", sep = "\t", row.names = NULL, header = T)head(pathway)##                                ont    gene## 1 HALLMARK_TNFA_SIGNALING_VIA_NFKB    JUNB## 2 HALLMARK_TNFA_SIGNALING_VIA_NFKB   CXCL2## 3 HALLMARK_TNFA_SIGNALING_VIA_NFKB    ATF3## 4 HALLMARK_TNFA_SIGNALING_VIA_NFKB  NFKBIA## 5 HALLMARK_TNFA_SIGNALING_VIA_NFKB TNFAIP3## 6 HALLMARK_TNFA_SIGNALING_VIA_NFKB   PTGS2

通路提取

# HALLMARK_HYPOXIA, HALLMARK_DNA_REPAIR, HALLMARK_P53_PATHWAYtarget_pathway <- pathway[pathway$ont %in% c("HALLMARK_HYPOXIA", "HALLMARK_DNA_REPAIR", "HALLMARK_P53_PATHWAY"), ]target_pathway <- droplevels.data.frame(target_pathway)summary(target_pathway)##      ont                gene          ##  Length:550         Length:550        ##  Class :character   Class :character  ##  Mode  :character   Mode  :characterhead(target_pathway)##                  ont  gene## 201 HALLMARK_HYPOXIA  PGK1## 202 HALLMARK_HYPOXIA  PDK1## 203 HALLMARK_HYPOXIA  GBE1## 204 HALLMARK_HYPOXIA  PFKL## 205 HALLMARK_HYPOXIA ALDOA## 206 HALLMARK_HYPOXIA  ENO2

表达矩阵提取

expr_with_gene <- exprexpr_with_gene$gene <- rownames(expr_with_gene)target_pathway_with_expr <- left_join(target_pathway, expr_with_gene)summary(target_pathway_with_expr)##      ont                gene            untrt_N61311      untrt_N052611      untrt_N080611     ##  Length:550         Length:550         Min.   :     0.0   Min.   :     0.0   Min.   :     0.0  ##  Class :character   Class :character   1st Qu.:   254.2   1st Qu.:   240.8   1st Qu.:   235.0  ##  Mode  :character   Mode  :character   Median :   781.3   Median :   784.1   Median :   734.9  ##                                        Mean   :  2528.6   Mean   :  2895.1   Mean   :  2549.2  ##                                        3rd Qu.:  1852.4   3rd Qu.:  1727.2   3rd Qu.:  1932.4  ##                                        Max.   :212953.1   Max.   :360796.2   Max.   :258977.3  ##                                        NA's   :36         NA's   :36         NA's   :36        ##  untrt_N061011        trt_N61311        trt_N052611        trt_N080611        trt_N061011      ##  Min.   :     0.0   Min.   :     0.0   Min.   :     0.0   Min.   :     0.0   Min.   :     0.0  ##  1st Qu.:   237.9   1st Qu.:   248.2   1st Qu.:   211.0   1st Qu.:   250.6   1st Qu.:   227.9  ##  Median :   764.2   Median :   766.6   Median :   723.2   Median :   739.3   Median :   746.0  ##  Mean   :  2864.9   Mean   :  2531.8   Mean   :  2783.3   Mean   :  2840.3   Mean   :  3043.6  ##  3rd Qu.:  1870.0   3rd Qu.:  1872.4   3rd Qu.:  1832.2   3rd Qu.:  1825.8   3rd Qu.:  1925.1  ##  Max.   :408573.1   Max.   :210002.2   Max.   :316009.1   Max.   :225547.4   Max.   :393843.7  ##  NA's   :36         NA's   :36         NA's   :36         NA's   :36         NA's   :36

移除通路中未检测到表达的基因

target_pathway_with_expr <- na.omit(target_pathway_with_expr)summary(target_pathway_with_expr)##      ont                gene            untrt_N61311      untrt_N052611      untrt_N080611     ##  Length:514         Length:514         Min.   :     0.0   Min.   :     0.0   Min.   :     0.0  ##  Class :character   Class :character   1st Qu.:   254.2   1st Qu.:   240.8   1st Qu.:   235.0  ##  Mode  :character   Mode  :character   Median :   781.3   Median :   784.1   Median :   734.9  ##                                        Mean   :  2528.6   Mean   :  2895.1   Mean   :  2549.2  ##                                        3rd Qu.:  1852.4   3rd Qu.:  1727.2   3rd Qu.:  1932.4  ##                                        Max.   :212953.1   Max.   :360796.2   Max.   :258977.3  ##  untrt_N061011        trt_N61311        trt_N052611        trt_N080611        trt_N061011      ##  Min.   :     0.0   Min.   :     0.0   Min.   :     0.0   Min.   :     0.0   Min.   :     0.0  ##  1st Qu.:   237.9   1st Qu.:   248.2   1st Qu.:   211.0   1st Qu.:   250.6   1st Qu.:   227.9  ##  Median :   764.2   Median :   766.6   Median :   723.2   Median :   739.3   Median :   746.0  ##  Mean   :  2864.9   Mean   :  2531.8   Mean   :  2783.3   Mean   :  2840.3   Mean   :  3043.6  ##  3rd Qu.:  1870.0   3rd Qu.:  1872.4   3rd Qu.:  1832.2   3rd Qu.:  1825.8   3rd Qu.:  1925.1  ##  Max.   :408573.1   Max.   :210002.2   Max.   :316009.1   Max.   :225547.4   Max.   :393843.7head(target_pathway_with_expr)##                ont  gene untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611## 1 HALLMARK_HYPOXIA  PGK1     7567.398     7893.2150     6254.5945      5529.122  7595.0408   6969.6128## 2 HALLMARK_HYPOXIA  PDK1     1009.850     1042.4868      735.9359       673.208   419.6273    365.0062## 3 HALLMARK_HYPOXIA  GBE1     3859.557     1494.4120     3803.5627      3295.191  4769.5464   2359.7150## 4 HALLMARK_HYPOXIA  PFKL     3581.499     3018.0675     2789.4430      3084.570  2867.2464   2599.5095## 5 HALLMARK_HYPOXIA ALDOA    19139.085    19587.3216    18089.5116     15519.899 16388.1123  13949.5659## 6 HALLMARK_HYPOXIA  ENO2     1964.796      979.5255     1041.4660      1288.837  1303.5671    766.9436##   trt_N080611 trt_N061011## 1   15011.823   6076.4392## 2    1056.622    383.6163## 3    4759.809   4296.5471## 4    4399.403   3090.6701## 5   22630.701  14374.3437## 6    1473.336    892.4621

转换宽矩阵为长矩阵

target_pathway_with_expr_long <- target_pathway_with_expr %>% gather(key = "Sample", value = "Expr", -ont, -gene)head(target_pathway_with_expr_long)##                ont  gene       Sample      Expr## 1 HALLMARK_HYPOXIA  PGK1 untrt_N61311  7567.398## 2 HALLMARK_HYPOXIA  PDK1 untrt_N61311  1009.850## 3 HALLMARK_HYPOXIA  GBE1 untrt_N61311  3859.557## 4 HALLMARK_HYPOXIA  PFKL untrt_N61311  3581.499## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085## 6 HALLMARK_HYPOXIA  ENO2 untrt_N61311  1964.796

合并样本信息

metadata$Sample <- rownames(metadata)target_pathway_with_expr_conditions_long <- target_pathway_with_expr_long %>% left_join(metadata, by = "Sample")head(target_pathway_with_expr_conditions_long)##                ont  gene       Sample      Expr conditions individual## 1 HALLMARK_HYPOXIA  PGK1 untrt_N61311  7567.398      untrt     N61311## 2 HALLMARK_HYPOXIA  PDK1 untrt_N61311  1009.850      untrt     N61311## 3 HALLMARK_HYPOXIA  GBE1 untrt_N61311  3859.557      untrt     N61311## 4 HALLMARK_HYPOXIA  PFKL untrt_N61311  3581.499      untrt     N61311## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085      untrt     N61311## 6 HALLMARK_HYPOXIA  ENO2 untrt_N61311  1964.796      untrt     N61311

再次画点带图 (也不太好看)

ggstripchart(target_pathway_with_expr_conditions_long, x = "conditions", y = "Expr",          ylab = "Expression", combine=F,          color = "conditions", palette = "jco",           size = 0.1, jitter = 0.2,          facet.by = "ont",          add.params = list(color = "gray"),          # add = "boxplot"          add = "median_iqr")
image

表达数据log转换(减小高表达基因的影响)

target_pathway_with_expr_conditions_long$logExpr <- log2(target_pathway_with_expr_conditions_long$Expr + 1)ggstripchart(target_pathway_with_expr_conditions_long, x = "conditions", y = "logExpr",          ylab = "Expression", combine=F,          color = "conditions", palette = "jco",           size = 0.1, jitter = 0.2,          facet.by = "ont",          add.params = list(color = "gray"),          # add = "boxplot"          add = "median_iqr")
image
head(target_pathway_with_expr_conditions_long)##                ont  gene       Sample      Expr conditions individual   logExpr## 1 HALLMARK_HYPOXIA  PGK1 untrt_N61311  7567.398      untrt     N61311 12.885772## 2 HALLMARK_HYPOXIA  PDK1 untrt_N61311  1009.850      untrt     N61311  9.981353## 3 HALLMARK_HYPOXIA  GBE1 untrt_N61311  3859.557      untrt     N61311 11.914593## 4 HALLMARK_HYPOXIA  PFKL untrt_N61311  3581.499      untrt     N61311 11.806750## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085      untrt     N61311 14.224310## 6 HALLMARK_HYPOXIA  ENO2 untrt_N61311  1964.796      untrt     N61311 10.940898

提取P53通路进行后续分析

HALLMARK_P53_PATHWAY = target_pathway_with_expr_conditions_long[target_pathway_with_expr_conditions_long$ont=="HALLMARK_P53_PATHWAY",]ggstripchart(HALLMARK_P53_PATHWAY, x = "conditions", y = "logExpr",             title = "HALLMARK_P53_PATHWAY",          ylab = "Expression",          color = "conditions", palette = "jco",           size = 0.1, jitter = 0.2,          add.params = list(color = "gray"),          # add = "boxplot"          add = "median_iqr")
image
ggdotplot(HALLMARK_P53_PATHWAY, x = "conditions", y = "logExpr",             title = "HALLMARK_P53_PATHWAY",          ylab = "Expression",          color = "conditions", palette = "jco",           fill = "white",          binwidth = 0.1,          add.params = list(size = 0.9),          # add = "boxplot"          add = "median_iqr")
image

密度图

ggdensity(HALLMARK_P53_PATHWAY,       x="logExpr",       y = "..density..",       combine = TRUE,                  # Combine the 3 plots       xlab = "Expression",        add = "median",                  # Add median line.        rug = TRUE,                      # Add marginal rug       color = "conditions",        fill = "conditions",       palette = "jco")
image
head(top6_t_with_group)##          Sample conditions individual    KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## 1   trt_N052611        trt    N052611  633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620## 2   trt_N061011        trt    N061011  641.4958 3778.1735 1501.515 2194.58930 1333.9121  95.33916## 3   trt_N080611        trt    N080611  979.7758 4629.6653 1464.598 1374.90745 1120.0065  86.82929## 4    trt_N61311        trt     N61311  936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## 5 untrt_N052611      untrt    N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## 6 untrt_N061011      untrt    N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982top6_t_with_group_long = top6_t_with_group %>% gather(key = "Gene", value = "Expr", -conditions, -Sample, -individual)top6_t_with_group_long$conditions <- as.factor(top6_t_with_group_long$conditions)head(top6_t_with_group_long)##          Sample conditions individual   Gene      Expr## 1   trt_N052611        trt    N052611 KCTD12  633.4462## 2   trt_N061011        trt    N061011 KCTD12  641.4958## 3   trt_N080611        trt    N080611 KCTD12  979.7758## 4    trt_N61311        trt     N61311 KCTD12  936.6948## 5 untrt_N052611      untrt    N052611 KCTD12 3978.0401## 6 untrt_N061011      untrt    N061011 KCTD12 4792.3417

ggstatsplot绘图和统计分析

箱线图

library(ggstatsplot)ggstatsplot::ggwithinstats(  data = top6_t_with_group,  x = conditions,  y = PER1,  sort = "descending", # ordering groups along the x-axis based on  sort.fun = median, # values of `y` variable  pairwise.comparisons = TRUE,  pairwise.display = "s",  pairwise.annotation = "p",  title = "PER1",  caption = "PER1 compare",  ggstatsplot.layer = FALSE,  messages = FALSE)
image
head(target_pathway_with_expr_conditions_long)##                ont  gene       Sample      Expr conditions individual   logExpr## 1 HALLMARK_HYPOXIA  PGK1 untrt_N61311  7567.398      untrt     N61311 12.885772## 2 HALLMARK_HYPOXIA  PDK1 untrt_N61311  1009.850      untrt     N61311  9.981353## 3 HALLMARK_HYPOXIA  GBE1 untrt_N61311  3859.557      untrt     N61311 11.914593## 4 HALLMARK_HYPOXIA  PFKL untrt_N61311  3581.499      untrt     N61311 11.806750## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085      untrt     N61311 14.224310## 6 HALLMARK_HYPOXIA  ENO2 untrt_N61311  1964.796      untrt     N61311 10.940898head(HALLMARK_P53_PATHWAY)##                      ont   gene       Sample       Expr conditions individual   logExpr## 322 HALLMARK_P53_PATHWAY CDKN1A untrt_N61311 14406.1316      untrt     N61311 13.814496## 323 HALLMARK_P53_PATHWAY   BTG2 untrt_N61311  1163.7198      untrt     N61311 10.185767## 324 HALLMARK_P53_PATHWAY   MDM2 untrt_N61311  3614.5324      untrt     N61311 11.819992## 325 HALLMARK_P53_PATHWAY  CCNG1 untrt_N61311  5749.1367      untrt     N61311 12.489381## 326 HALLMARK_P53_PATHWAY    FAS untrt_N61311  1029.4007      untrt     N61311 10.008990## 327 HALLMARK_P53_PATHWAY   TOB1 untrt_N61311   829.7721      untrt     N61311  9.698309library(ggstatsplot)ggstatsplot::ggwithinstats(  data = HALLMARK_P53_PATHWAY,  x = conditions,  y = logExpr,  sort = "descending", # ordering groups along the x-axis based on  sort.fun = median, # values of `y` variable  pairwise.comparisons = TRUE,  pairwise.display = "s",  pairwise.annotation = "p",  title = "HALLMARK_P53_PATHWAY",  path.point = F,  ggtheme = ggthemes::theme_fivethirtyeight(),  ggstatsplot.layer = FALSE,  messages = FALSE)
image
library(ggstatsplot)ggstatsplot::grouped_ggwithinstats(  data = target_pathway_with_expr_conditions_long,  x = conditions,  y = logExpr,  grouping.var = ont,  xlab = "Condition",  ylab = "CEMIP expression",  path.point = F,  palette = "Set1", # R color brewer  ggstatsplot.layer = FALSE,  messages = FALSE)
image
ggstatsplot::grouped_ggwithinstats(data = top6_t_with_group_long, x = conditions, y = Expr, xlab = "Condition", ylab = "CEMIP expression",     grouping.var = Gene, ggstatsplot.layer = FALSE, messages = FALSE)
image
head(expr)##        untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## FN1       245667.66      427435.1     221687.51      371144.2  240187.24   450103.21   280226.19   376518.23## DCN       212953.14      360796.2     258977.30      408573.1  210002.18   316009.14   225547.39   393843.74## CEMIP      40996.34      137783.1      53813.92       91066.8   62301.12   223111.85   212724.84   157919.47## CCDC80    137229.15      232772.2      86258.13      212237.3  136730.76   226070.89   124634.56   236237.81## IGFBP5     77812.65      288609.2     210628.87      168067.4   96021.74   217439.21   162677.38   168387.36## COL1A1    146450.41      127367.3     152281.50      140861.1   62358.64    53800.47    69160.97    51044.06

散点图

ggstatsplot::ggscatterstats(data = expr, x = untrt_N61311, y = untrt_N052611, xlab = "untrt_N61311", ylab = "untrt_N052611",     title = "Sample correlation", messages = FALSE)
image
ggstatsplot::ggscatterstats(  data = log2(expr+1),  x = untrt_N61311,  y = trt_N61311,  xlab = "untrt_N61311",  ylab = "trt_N61311",  title = "Sample correlation",  #marginal.type = "density", # type of marginal distribution to be displayed  messages = FALSE)
image

相关性图

基因共表达

gene_cor <- cor(t(top6))head(gene_cor)##             KCTD12       MAOA    ARHGEF2    SPARCL1       PER1     SLC6A9## KCTD12   1.0000000 -0.9792624  0.9799663 -0.9619660 -0.9529732  0.9772852## MAOA    -0.9792624  1.0000000 -0.9897706  0.9406196  0.9614877 -0.9871408## ARHGEF2  0.9799663 -0.9897706  1.0000000 -0.9628750 -0.9660416  0.9791535## SPARCL1 -0.9619660  0.9406196 -0.9628750  1.0000000  0.9853858 -0.9510121## PER1    -0.9529732  0.9614877 -0.9660416  0.9853858  1.0000000 -0.9615253## SLC6A9   0.9772852 -0.9871408  0.9791535 -0.9510121 -0.9615253  1.0000000pheatmap(gene_cor)
image
Hmisc::rcorr(as.matrix(top6_t))##         KCTD12  MAOA ARHGEF2 SPARCL1  PER1 SLC6A9## KCTD12    1.00 -0.98    0.98   -0.96 -0.95   0.98## MAOA     -0.98  1.00   -0.99    0.94  0.96  -0.99## ARHGEF2   0.98 -0.99    1.00   -0.96 -0.97   0.98## SPARCL1  -0.96  0.94   -0.96    1.00  0.99  -0.95## PER1     -0.95  0.96   -0.97    0.99  1.00  -0.96## SLC6A9    0.98 -0.99    0.98   -0.95 -0.96   1.00## ## n= 8 ## ## ## P##         KCTD12 MAOA  ARHGEF2 SPARCL1 PER1  SLC6A9## KCTD12         0e+00 0e+00   1e-04   3e-04 0e+00 ## MAOA    0e+00        0e+00   5e-04   1e-04 0e+00 ## ARHGEF2 0e+00  0e+00         1e-04   0e+00 0e+00 ## SPARCL1 1e-04  5e-04 1e-04           0e+00 3e-04 ## PER1    3e-04  1e-04 0e+00   0e+00         1e-04 ## SLC6A9  0e+00  0e+00 0e+00   3e-04   1e-04head(top6_t)##                  KCTD12      MAOA  ARHGEF2    SPARCL1      PER1    SLC6A9## untrt_N61311  4700.7937  438.5445 3025.623   58.15705  170.6164 360.66314## untrt_N052611 3978.0401  452.9934 3105.783  102.58269  156.3692 413.87971## untrt_N080611 4416.1517  516.6303 3094.513   80.00997  194.9750 365.47650## untrt_N061011 4792.3417  258.7328 2909.990   82.59042  123.4769 443.71982## trt_N61311     936.6948 4628.0086 1395.398 2220.50867 1728.3812  63.90538## trt_N052611    633.4462 4429.7201 1441.992 1750.98786 1230.2575  56.89620ggstatsplot::ggcorrmat(  data = top6_t,  corr.method = "robust", # correlation method  sig.level = 0.0001, # threshold of significance  p.adjust.method = "holm", # p-value adjustment method for multiple comparisons  # cor.vars = c(sleep_rem, awake:bodywt), # a range of variables can be selected  # cor.vars.names = c(  #   "REM sleep", # variable names  #   "time awake",  #   "brain weight",  #   "body weight"  # ),  matrix.type = "upper", # type of visualization matrix  palette = "Set2",  #colors = c("#B2182B", "white", "#4D4D4D"),  title = "Correlalogram for mammals sleep dataset",  subtitle = "sleep units: hours; weight units: kilograms")
image

样品相关性

top100 <- head(expr,100)ggstatsplot::ggcorrmat(  data = top100,  corr.method = "robust", # correlation method  sig.level = 0.05, # threshold of significance  p.adjust.method = "holm", # p-value adjustment method for multiple comparisons  # cor.vars = c(sleep_rem, awake:bodywt), # a range of variables can be selected  # cor.vars.names = c(  #   "REM sleep", # variable names  #   "time awake",  #   "brain weight",  #   "body weight"  # ),  matrix.type = "upper", # type of visualization matrix  palette = "Set2"  #colors = c("#B2182B", "white", "#4D4D4D"),)
image

相关文章

网友评论

      本文标题:常用R语言绘图展示方式

      本文链接:https://www.haomeiwen.com/subject/ynpxwktx.html