本文转载自:从一套表达和通路数据学习常见的绘图展示方式和报错处理
这个为生信学习和生信作图打造的开源R教程真香!!!
加载需要的包
library(dplyr)library(ggpubr)library(tidyr)library(ggplot2)library(pheatmap)library(ggstatsplot)library(Hmisc)
读入数据
’row.names’里不能有重复的名字 Duplicate row names
expr <- read.table("ehbio.simplier.DESeq2.normalized.symbol.txt", row.names = 1, header = T, sep = "\t")
行名唯一化处理
这里使用make.names
转换行名为唯一,实际需要先弄清楚为什么会有重复名字。
expr <- read.table("ehbio.simplier.DESeq2.normalized.symbol.txt", row.names = NULL, header = T, sep = "\t")head(expr)## id untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## 1 FN1 245667.66 427435.1 221687.51 371144.2 240187.24 450103.21 280226.19 376518.23## 2 DCN 212953.14 360796.2 258977.30 408573.1 210002.18 316009.14 225547.39 393843.74## 3 CEMIP 40996.34 137783.1 53813.92 91066.8 62301.12 223111.85 212724.84 157919.47## 4 CCDC80 137229.15 232772.2 86258.13 212237.3 136730.76 226070.89 124634.56 236237.81## 5 IGFBP5 77812.65 288609.2 210628.87 168067.4 96021.74 217439.21 162677.38 168387.36## 6 COL1A1 146450.41 127367.3 152281.50 140861.1 62358.64 53800.47 69160.97 51044.06
有哪些基因名是重复出现的?
expr$id[duplicated(expr$id)]## [1] "MATR3" "PKD1P1" "HSPA14" "OR7E47P" "POLR2J3" "ATXN7" "TMSB15B" "LINC-PINT" ## [9] "TBCE" "SNX29P2" "SCO2" "POLR2J4" "CCDC39" "RGS5" "BMS1P21" "RF00017" ## [17] "GOLGA8M" "RF00017" "DNAJC9-AS1" "CYB561D2" "RF00017" "IPO5P1" "RF00017" "RF00017" ## [25] "RF00017" "SPATA13" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [33] "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [41] "RF00019" "RF00019" "RF00017" "RF00017" "RF00017" "RF00019" "BMS1P4" "RF00019" ## [49] "RF00019" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [57] "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00019" ## [65] "RF00017" "RF00017" "RF00017" "RF00019" "RF00017" "RF00017" "LINC01238" "RF00017" ## [73] "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [81] "RF00017" "RF00017" "RF02271" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [89] "LINC01297" "RF00019" "RF00017" "RF00012" "RF00019" "RF00017" "RF00017" "RF00019" ## [97] "RF00017" "RF00017" "RF00017" "ZNF503" "RF00017" "RF00017" "RF00017" "RF00017" ## [105] "RF00017" "RF00017" "RF00017" "RF00017" "RF02271" "RF00019" "RF00019" "RF00017" ## [113] "RF00019" "RF02271" "RF00017" "RF00017" "RF00017" "RF00017" "RF00019" "RF00019" ## [121] "RF00017" "RF00019" "ITFG2-AS1" "RF00019" "RF00019" "RF00017" "RF00019" "RF00017" ## [129] "RF00017" "RF00017" "RF00019" "RF00017" "RF00012" "RF00017" "RF00017" "RAET1E-AS1"## [137] "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" ## [145] "RF00012" "RF02271" "RF00019" "LINC01422" "RF02271" "RF00017" "RF00019" "RF00019" ## [153] "RF00019" "RF00019" "RF00017" "LINC01481" "RF00017" "SNHG28" "RF00019" "RF00019" ## [161] "RF00019" "RF00019" "LINC00484" "LINC00941" "ALG1L9P" "RF00017" "DUXAP8" "RF00017" ## [169] "RF00017" "RF00017" "RF00017" "RF00017" "RF00017" "RMRP" "RF00017" "RF00017" ## [177] "RF00017" "RF00017" "DIABLO"
名字唯一化处理
# 该行命令是展示make.names的效果make.names(c("a", "a", "b", "b", "b"), unique = T)## [1] "a" "a.1" "b" "b.1" "b.2"
唯一化之后的名字作为行名字,并去掉原来的第一列
expr_names <- make.names(expr$id, unique = T)rownames(expr) <- expr_namesexpr <- expr[, -1]head(expr)## untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## FN1 245667.66 427435.1 221687.51 371144.2 240187.24 450103.21 280226.19 376518.23## DCN 212953.14 360796.2 258977.30 408573.1 210002.18 316009.14 225547.39 393843.74## CEMIP 40996.34 137783.1 53813.92 91066.8 62301.12 223111.85 212724.84 157919.47## CCDC80 137229.15 232772.2 86258.13 212237.3 136730.76 226070.89 124634.56 236237.81## IGFBP5 77812.65 288609.2 210628.87 168067.4 96021.74 217439.21 162677.38 168387.36## COL1A1 146450.41 127367.3 152281.50 140861.1 62358.64 53800.47 69160.97 51044.06
热图绘制
library(pheatmap)top6 <- head(expr)pheatmap(top6)
提取差异基因绘制热图
读入差异基因列表
de_gene <- read.table("ehbio.DESeq2.all.DE.symbol", row.names = NULL, header = F, sep = "\t")head(de_gene)## V1 V2## 1 ARHGEF2 untrt._higherThan_.trt## 2 KCTD12 untrt._higherThan_.trt## 3 SLC6A9 untrt._higherThan_.trt## 4 GXYLT2 untrt._higherThan_.trt## 5 RAB7B untrt._higherThan_.trt## 6 NEK10 untrt._higherThan_.trt
提取Top3 差异的基因
# library(dplyr)top6_de_gene <- de_gene %>% group_by(V2) %>% dplyr::slice(1:3)top6 <- expr[which(rownames(expr) %in% top6_de_gene$V1), ]head(top6)## untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## KCTD12 4700.79369 3978.0401 4416.15169 4792.34174 936.69481 633.4462 979.77576 641.49582## MAOA 438.54451 452.9934 516.63033 258.73279 4628.00860 4429.7201 4629.66529 3778.17351## ARHGEF2 3025.62334 3105.7830 3094.51304 2909.99043 1395.39850 1441.9916 1464.59769 1501.51509## SPARCL1 58.15705 102.5827 80.00997 82.59042 2220.50867 1750.9879 1374.90745 2194.58930## PER1 170.61639 156.3692 194.97497 123.47689 1728.38117 1230.2575 1120.00650 1333.91208## SLC6A9 360.66314 413.8797 365.47650 443.71982 63.90538 56.8962 86.82929 95.33916
读入样品分组信息作为列注释
metadata <- read.table("sampleFile", header = T, row.names = 1)pheatmap(top6, annotation_col = metadata)
按行标准化后展示
pheatmap(top6, annotation_col = metadata, scale = "row", cluster_cols = F)
箱线图和统计比较
head(top6)## untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## KCTD12 4700.79369 3978.0401 4416.15169 4792.34174 936.69481 633.4462 979.77576 641.49582## MAOA 438.54451 452.9934 516.63033 258.73279 4628.00860 4429.7201 4629.66529 3778.17351## ARHGEF2 3025.62334 3105.7830 3094.51304 2909.99043 1395.39850 1441.9916 1464.59769 1501.51509## SPARCL1 58.15705 102.5827 80.00997 82.59042 2220.50867 1750.9879 1374.90745 2194.58930## PER1 170.61639 156.3692 194.97497 123.47689 1728.38117 1230.2575 1120.00650 1333.91208## SLC6A9 360.66314 413.8797 365.47650 443.71982 63.90538 56.8962 86.82929 95.33916
矩阵转置
top6_t <- as.data.frame(t(top6))top6_t## KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## untrt_N61311 4700.7937 438.5445 3025.623 58.15705 170.6164 360.66314## untrt_N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## untrt_N080611 4416.1517 516.6303 3094.513 80.00997 194.9750 365.47650## untrt_N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982## trt_N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## trt_N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620## trt_N080611 979.7758 4629.6653 1464.598 1374.90745 1120.0065 86.82929## trt_N061011 641.4958 3778.1735 1501.515 2194.58930 1333.9121 95.33916
与样本属性信息合并
top6_t_with_group <- merge(metadata, top6_t, by = 0)head(top6_t_with_group)## Row.names conditions individual KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## 1 trt_N052611 trt N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620## 2 trt_N061011 trt N061011 641.4958 3778.1735 1501.515 2194.58930 1333.9121 95.33916## 3 trt_N080611 trt N080611 979.7758 4629.6653 1464.598 1374.90745 1120.0065 86.82929## 4 trt_N61311 trt N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## 5 untrt_N052611 untrt N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## 6 untrt_N061011 untrt N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982
修改第一列的列名字
colnames(top6_t_with_group)[1] = "Sample"head(top6_t_with_group)## Sample conditions individual KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## 1 trt_N052611 trt N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620## 2 trt_N061011 trt N061011 641.4958 3778.1735 1501.515 2194.58930 1333.9121 95.33916## 3 trt_N080611 trt N080611 979.7758 4629.6653 1464.598 1374.90745 1120.0065 86.82929## 4 trt_N61311 trt N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## 5 untrt_N052611 untrt N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## 6 untrt_N061011 untrt N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982
单基因箱线图
library(ggpubr)ggboxplot(top6_t_with_group, x = "conditions", y = "KCTD12", title = "KCTD12", ylab = "Expression", color = "conditions", palette = "jco")
# palette npg, lancet,
多基因箱线图 (combine)
ggboxplot(top6_t_with_group, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", combine = T, color = "conditions", palette = "jco")
多基因箱线图 (merge)
ggboxplot(top6_t_with_group, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", merge = "flip", color = "conditions", palette = "nature")
数据对数转换后绘制箱线图
top6_t_with_group_log = top6_t_with_group %>% purrr::map_if(is.numeric, log1p) %>% as.data.framehead(top6_t_with_group_log)## Sample conditions individual KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## 1 trt_N052611 trt N052611 6.452752 8.396317 7.274474 7.468506 7.115791 4.058652## 2 trt_N061011 trt N061011 6.465360 8.237261 7.314896 7.694206 7.196621 4.567875## 3 trt_N080611 trt N080611 6.888344 8.440456 7.290018 7.226869 7.021982 4.475395## 4 trt_N61311 trt N61311 6.843425 8.440098 7.241652 7.705942 7.455519 4.172930## 5 untrt_N052611 untrt N052611 8.288796 6.118083 8.041343 4.640370 5.058595 6.027989## 6 untrt_N061011 untrt N061011 8.474983 5.559653 7.976249 4.425929 4.824120 6.097444ggboxplot(top6_t_with_group_log, x = "conditions", y = c("KCTD12", "MAOA", "PER1", "SLC6A9"), ylab = "Expression", merge = "flip", fill = "conditions", palette = "Set3")
用ggplot2实现ggpubr
head(top6_t_with_group)## Sample conditions individual KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## 1 trt_N052611 trt N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620## 2 trt_N061011 trt N061011 641.4958 3778.1735 1501.515 2194.58930 1333.9121 95.33916## 3 trt_N080611 trt N080611 979.7758 4629.6653 1464.598 1374.90745 1120.0065 86.82929## 4 trt_N61311 trt N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## 5 untrt_N052611 untrt N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## 6 untrt_N061011 untrt N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982
转换为长矩阵
top6_t_with_group_melt <- gather(top6_t_with_group, key = "Gene", value = "Expr", -conditions, -Sample, -individual)top6_t_with_group_melt## Sample conditions individual Gene Expr## 1 trt_N052611 trt N052611 KCTD12 633.44616## 2 trt_N061011 trt N061011 KCTD12 641.49582## 3 trt_N080611 trt N080611 KCTD12 979.77576## 4 trt_N61311 trt N61311 KCTD12 936.69481## 5 untrt_N052611 untrt N052611 KCTD12 3978.04011## 6 untrt_N061011 untrt N061011 KCTD12 4792.34174## 7 untrt_N080611 untrt N080611 KCTD12 4416.15169## 8 untrt_N61311 untrt N61311 KCTD12 4700.79369## 9 trt_N052611 trt N052611 MAOA 4429.72011## 10 trt_N061011 trt N061011 MAOA 3778.17351## 11 trt_N080611 trt N080611 MAOA 4629.66529## 12 trt_N61311 trt N61311 MAOA 4628.00860## 13 untrt_N052611 untrt N052611 MAOA 452.99337## 14 untrt_N061011 untrt N061011 MAOA 258.73279## 15 untrt_N080611 untrt N080611 MAOA 516.63033## 16 untrt_N61311 untrt N61311 MAOA 438.54451## 17 trt_N052611 trt N052611 ARHGEF2 1441.99162## 18 trt_N061011 trt N061011 ARHGEF2 1501.51509## 19 trt_N080611 trt N080611 ARHGEF2 1464.59769## 20 trt_N61311 trt N61311 ARHGEF2 1395.39850## 21 untrt_N052611 untrt N052611 ARHGEF2 3105.78299## 22 untrt_N061011 untrt N061011 ARHGEF2 2909.99043## 23 untrt_N080611 untrt N080611 ARHGEF2 3094.51304## 24 untrt_N61311 untrt N61311 ARHGEF2 3025.62334## 25 trt_N052611 trt N052611 SPARCL1 1750.98786## 26 trt_N061011 trt N061011 SPARCL1 2194.58930## 27 trt_N080611 trt N080611 SPARCL1 1374.90745## 28 trt_N61311 trt N61311 SPARCL1 2220.50867## 29 untrt_N052611 untrt N052611 SPARCL1 102.58269## 30 untrt_N061011 untrt N061011 SPARCL1 82.59042## 31 untrt_N080611 untrt N080611 SPARCL1 80.00997## 32 untrt_N61311 untrt N61311 SPARCL1 58.15705## 33 trt_N052611 trt N052611 PER1 1230.25755## 34 trt_N061011 trt N061011 PER1 1333.91208## 35 trt_N080611 trt N080611 PER1 1120.00650## 36 trt_N61311 trt N61311 PER1 1728.38117## 37 untrt_N052611 untrt N052611 PER1 156.36920## 38 untrt_N061011 untrt N061011 PER1 123.47689## 39 untrt_N080611 untrt N080611 PER1 194.97497## 40 untrt_N61311 untrt N61311 PER1 170.61639## 41 trt_N052611 trt N052611 SLC6A9 56.89620## 42 trt_N061011 trt N061011 SLC6A9 95.33916## 43 trt_N080611 trt N080611 SLC6A9 86.82929## 44 trt_N61311 trt N61311 SLC6A9 63.90538## 45 untrt_N052611 untrt N052611 SLC6A9 413.87971## 46 untrt_N061011 untrt N061011 SLC6A9 443.71982## 47 untrt_N080611 untrt N080611 SLC6A9 365.47650## 48 untrt_N61311 untrt N61311 SLC6A9 360.66314library(ggplot2)ggplot(top6_t_with_group_melt, aes(x = Gene, y = Expr)) + geom_boxplot(aes(color = conditions)) + theme_classic()
配色
序列型颜色板适用于从低到高排序明显的数据,浅色数字小,深色数字大。
library(RColorBrewer)display.brewer.all(type = "seq")
离散型颜色板适合带“正、负”的,对极值和中间值比较注重的数据。
display.brewer.all(type = "div")

分类型颜色板比较适合区分分类型的数据。
display.brewer.all(type = "qual")
箱线图加统计分析
my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group, x = "conditions", y = "PER1", title = "PER1", ylab = "Expression", add = "jitter", # Add jittered points #add = "dotplot", fill = "conditions", palette = "Paired") + stat_compare_means(comparisons = my_comparisons)
标记点来源的样本
my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group, x = "conditions", y = "PER1", title = "PER1", ylab = "Expression", add = "jitter", # Add jittered points add.params = list(size = 0.1, jitter = 0.2), # Point size and the amount of jittering label = "Sample", # column containing point labels label.select = list(top.up = 2, top.down = 2),# Select some labels to display font.label = list(size = 9, face = "italic"), # label font repel = TRUE, # Avoid label text overplotting fill = "conditions", palette = "Paired") + stat_compare_means(comparisons = my_comparisons)
修改统计检验方法
my_comparisons <- list(c("trt", "untrt"))ggboxplot(top6_t_with_group_log, x = "conditions", y = "PER1", title = "PER1", ylab = "Expression", add = "jitter", # Add jittered points add.params = list(size = 0.1, jitter = 0.2), # Point size and the amount of jittering label = "Sample", # column containing point labels label.select = list(top.up = 2, top.down = 2),# Select some labels to display font.label = list(size = 9, face = "italic"), # label font repel = TRUE, # Avoid label text overplotting fill = "conditions", palette = "Paired") + stat_compare_means(comparisons = my_comparisons, method = "t.test", paired = T)
小提琴图
ggviolin(top6_t_with_group, x = "conditions", y = c("KCTD12","MAOA"), ylab = "Expression", merge="flip", color = "conditions", palette = "jco", add = "boxplot" # add = "median_iqr" )
点带图(适合数据比较多时)
ggstripchart(top6_t_with_group, x = "conditions", y = c("KCTD12","MAOA"), ylab = "Expression", combine=T, color = "conditions", palette = "jco", size = 0.1, jitter = 0.2, add.params = list(color = "gray"), # add = "boxplot" add = "median_iqr")
通路内基因的比较
pathway <- read.table("h.all.v6.2.symbols.gmt.forGO", sep = "\t", row.names = NULL, header = T)head(pathway)## ont gene## 1 HALLMARK_TNFA_SIGNALING_VIA_NFKB JUNB## 2 HALLMARK_TNFA_SIGNALING_VIA_NFKB CXCL2## 3 HALLMARK_TNFA_SIGNALING_VIA_NFKB ATF3## 4 HALLMARK_TNFA_SIGNALING_VIA_NFKB NFKBIA## 5 HALLMARK_TNFA_SIGNALING_VIA_NFKB TNFAIP3## 6 HALLMARK_TNFA_SIGNALING_VIA_NFKB PTGS2
通路提取
# HALLMARK_HYPOXIA, HALLMARK_DNA_REPAIR, HALLMARK_P53_PATHWAYtarget_pathway <- pathway[pathway$ont %in% c("HALLMARK_HYPOXIA", "HALLMARK_DNA_REPAIR", "HALLMARK_P53_PATHWAY"), ]target_pathway <- droplevels.data.frame(target_pathway)summary(target_pathway)## ont gene ## Length:550 Length:550 ## Class :character Class :character ## Mode :character Mode :characterhead(target_pathway)## ont gene## 201 HALLMARK_HYPOXIA PGK1## 202 HALLMARK_HYPOXIA PDK1## 203 HALLMARK_HYPOXIA GBE1## 204 HALLMARK_HYPOXIA PFKL## 205 HALLMARK_HYPOXIA ALDOA## 206 HALLMARK_HYPOXIA ENO2
表达矩阵提取
expr_with_gene <- exprexpr_with_gene$gene <- rownames(expr_with_gene)target_pathway_with_expr <- left_join(target_pathway, expr_with_gene)summary(target_pathway_with_expr)## ont gene untrt_N61311 untrt_N052611 untrt_N080611 ## Length:550 Length:550 Min. : 0.0 Min. : 0.0 Min. : 0.0 ## Class :character Class :character 1st Qu.: 254.2 1st Qu.: 240.8 1st Qu.: 235.0 ## Mode :character Mode :character Median : 781.3 Median : 784.1 Median : 734.9 ## Mean : 2528.6 Mean : 2895.1 Mean : 2549.2 ## 3rd Qu.: 1852.4 3rd Qu.: 1727.2 3rd Qu.: 1932.4 ## Max. :212953.1 Max. :360796.2 Max. :258977.3 ## NA's :36 NA's :36 NA's :36 ## untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011 ## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 ## 1st Qu.: 237.9 1st Qu.: 248.2 1st Qu.: 211.0 1st Qu.: 250.6 1st Qu.: 227.9 ## Median : 764.2 Median : 766.6 Median : 723.2 Median : 739.3 Median : 746.0 ## Mean : 2864.9 Mean : 2531.8 Mean : 2783.3 Mean : 2840.3 Mean : 3043.6 ## 3rd Qu.: 1870.0 3rd Qu.: 1872.4 3rd Qu.: 1832.2 3rd Qu.: 1825.8 3rd Qu.: 1925.1 ## Max. :408573.1 Max. :210002.2 Max. :316009.1 Max. :225547.4 Max. :393843.7 ## NA's :36 NA's :36 NA's :36 NA's :36 NA's :36
移除通路中未检测到表达的基因
target_pathway_with_expr <- na.omit(target_pathway_with_expr)summary(target_pathway_with_expr)## ont gene untrt_N61311 untrt_N052611 untrt_N080611 ## Length:514 Length:514 Min. : 0.0 Min. : 0.0 Min. : 0.0 ## Class :character Class :character 1st Qu.: 254.2 1st Qu.: 240.8 1st Qu.: 235.0 ## Mode :character Mode :character Median : 781.3 Median : 784.1 Median : 734.9 ## Mean : 2528.6 Mean : 2895.1 Mean : 2549.2 ## 3rd Qu.: 1852.4 3rd Qu.: 1727.2 3rd Qu.: 1932.4 ## Max. :212953.1 Max. :360796.2 Max. :258977.3 ## untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011 ## Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0 ## 1st Qu.: 237.9 1st Qu.: 248.2 1st Qu.: 211.0 1st Qu.: 250.6 1st Qu.: 227.9 ## Median : 764.2 Median : 766.6 Median : 723.2 Median : 739.3 Median : 746.0 ## Mean : 2864.9 Mean : 2531.8 Mean : 2783.3 Mean : 2840.3 Mean : 3043.6 ## 3rd Qu.: 1870.0 3rd Qu.: 1872.4 3rd Qu.: 1832.2 3rd Qu.: 1825.8 3rd Qu.: 1925.1 ## Max. :408573.1 Max. :210002.2 Max. :316009.1 Max. :225547.4 Max. :393843.7head(target_pathway_with_expr)## ont gene untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611## 1 HALLMARK_HYPOXIA PGK1 7567.398 7893.2150 6254.5945 5529.122 7595.0408 6969.6128## 2 HALLMARK_HYPOXIA PDK1 1009.850 1042.4868 735.9359 673.208 419.6273 365.0062## 3 HALLMARK_HYPOXIA GBE1 3859.557 1494.4120 3803.5627 3295.191 4769.5464 2359.7150## 4 HALLMARK_HYPOXIA PFKL 3581.499 3018.0675 2789.4430 3084.570 2867.2464 2599.5095## 5 HALLMARK_HYPOXIA ALDOA 19139.085 19587.3216 18089.5116 15519.899 16388.1123 13949.5659## 6 HALLMARK_HYPOXIA ENO2 1964.796 979.5255 1041.4660 1288.837 1303.5671 766.9436## trt_N080611 trt_N061011## 1 15011.823 6076.4392## 2 1056.622 383.6163## 3 4759.809 4296.5471## 4 4399.403 3090.6701## 5 22630.701 14374.3437## 6 1473.336 892.4621
转换宽矩阵为长矩阵
target_pathway_with_expr_long <- target_pathway_with_expr %>% gather(key = "Sample", value = "Expr", -ont, -gene)head(target_pathway_with_expr_long)## ont gene Sample Expr## 1 HALLMARK_HYPOXIA PGK1 untrt_N61311 7567.398## 2 HALLMARK_HYPOXIA PDK1 untrt_N61311 1009.850## 3 HALLMARK_HYPOXIA GBE1 untrt_N61311 3859.557## 4 HALLMARK_HYPOXIA PFKL untrt_N61311 3581.499## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085## 6 HALLMARK_HYPOXIA ENO2 untrt_N61311 1964.796
合并样本信息
metadata$Sample <- rownames(metadata)target_pathway_with_expr_conditions_long <- target_pathway_with_expr_long %>% left_join(metadata, by = "Sample")head(target_pathway_with_expr_conditions_long)## ont gene Sample Expr conditions individual## 1 HALLMARK_HYPOXIA PGK1 untrt_N61311 7567.398 untrt N61311## 2 HALLMARK_HYPOXIA PDK1 untrt_N61311 1009.850 untrt N61311## 3 HALLMARK_HYPOXIA GBE1 untrt_N61311 3859.557 untrt N61311## 4 HALLMARK_HYPOXIA PFKL untrt_N61311 3581.499 untrt N61311## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085 untrt N61311## 6 HALLMARK_HYPOXIA ENO2 untrt_N61311 1964.796 untrt N61311
再次画点带图 (也不太好看)
ggstripchart(target_pathway_with_expr_conditions_long, x = "conditions", y = "Expr", ylab = "Expression", combine=F, color = "conditions", palette = "jco", size = 0.1, jitter = 0.2, facet.by = "ont", add.params = list(color = "gray"), # add = "boxplot" add = "median_iqr")
表达数据log转换(减小高表达基因的影响)
target_pathway_with_expr_conditions_long$logExpr <- log2(target_pathway_with_expr_conditions_long$Expr + 1)ggstripchart(target_pathway_with_expr_conditions_long, x = "conditions", y = "logExpr", ylab = "Expression", combine=F, color = "conditions", palette = "jco", size = 0.1, jitter = 0.2, facet.by = "ont", add.params = list(color = "gray"), # add = "boxplot" add = "median_iqr")
head(target_pathway_with_expr_conditions_long)## ont gene Sample Expr conditions individual logExpr## 1 HALLMARK_HYPOXIA PGK1 untrt_N61311 7567.398 untrt N61311 12.885772## 2 HALLMARK_HYPOXIA PDK1 untrt_N61311 1009.850 untrt N61311 9.981353## 3 HALLMARK_HYPOXIA GBE1 untrt_N61311 3859.557 untrt N61311 11.914593## 4 HALLMARK_HYPOXIA PFKL untrt_N61311 3581.499 untrt N61311 11.806750## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085 untrt N61311 14.224310## 6 HALLMARK_HYPOXIA ENO2 untrt_N61311 1964.796 untrt N61311 10.940898
提取P53通路进行后续分析
HALLMARK_P53_PATHWAY = target_pathway_with_expr_conditions_long[target_pathway_with_expr_conditions_long$ont=="HALLMARK_P53_PATHWAY",]ggstripchart(HALLMARK_P53_PATHWAY, x = "conditions", y = "logExpr", title = "HALLMARK_P53_PATHWAY", ylab = "Expression", color = "conditions", palette = "jco", size = 0.1, jitter = 0.2, add.params = list(color = "gray"), # add = "boxplot" add = "median_iqr")
ggdotplot(HALLMARK_P53_PATHWAY, x = "conditions", y = "logExpr", title = "HALLMARK_P53_PATHWAY", ylab = "Expression", color = "conditions", palette = "jco", fill = "white", binwidth = 0.1, add.params = list(size = 0.9), # add = "boxplot" add = "median_iqr")
密度图
ggdensity(HALLMARK_P53_PATHWAY, x="logExpr", y = "..density..", combine = TRUE, # Combine the 3 plots xlab = "Expression", add = "median", # Add median line. rug = TRUE, # Add marginal rug color = "conditions", fill = "conditions", palette = "jco")
head(top6_t_with_group)## Sample conditions individual KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## 1 trt_N052611 trt N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620## 2 trt_N061011 trt N061011 641.4958 3778.1735 1501.515 2194.58930 1333.9121 95.33916## 3 trt_N080611 trt N080611 979.7758 4629.6653 1464.598 1374.90745 1120.0065 86.82929## 4 trt_N61311 trt N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## 5 untrt_N052611 untrt N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## 6 untrt_N061011 untrt N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982top6_t_with_group_long = top6_t_with_group %>% gather(key = "Gene", value = "Expr", -conditions, -Sample, -individual)top6_t_with_group_long$conditions <- as.factor(top6_t_with_group_long$conditions)head(top6_t_with_group_long)## Sample conditions individual Gene Expr## 1 trt_N052611 trt N052611 KCTD12 633.4462## 2 trt_N061011 trt N061011 KCTD12 641.4958## 3 trt_N080611 trt N080611 KCTD12 979.7758## 4 trt_N61311 trt N61311 KCTD12 936.6948## 5 untrt_N052611 untrt N052611 KCTD12 3978.0401## 6 untrt_N061011 untrt N061011 KCTD12 4792.3417
ggstatsplot绘图和统计分析
箱线图
library(ggstatsplot)ggstatsplot::ggwithinstats( data = top6_t_with_group, x = conditions, y = PER1, sort = "descending", # ordering groups along the x-axis based on sort.fun = median, # values of `y` variable pairwise.comparisons = TRUE, pairwise.display = "s", pairwise.annotation = "p", title = "PER1", caption = "PER1 compare", ggstatsplot.layer = FALSE, messages = FALSE)
head(target_pathway_with_expr_conditions_long)## ont gene Sample Expr conditions individual logExpr## 1 HALLMARK_HYPOXIA PGK1 untrt_N61311 7567.398 untrt N61311 12.885772## 2 HALLMARK_HYPOXIA PDK1 untrt_N61311 1009.850 untrt N61311 9.981353## 3 HALLMARK_HYPOXIA GBE1 untrt_N61311 3859.557 untrt N61311 11.914593## 4 HALLMARK_HYPOXIA PFKL untrt_N61311 3581.499 untrt N61311 11.806750## 5 HALLMARK_HYPOXIA ALDOA untrt_N61311 19139.085 untrt N61311 14.224310## 6 HALLMARK_HYPOXIA ENO2 untrt_N61311 1964.796 untrt N61311 10.940898head(HALLMARK_P53_PATHWAY)## ont gene Sample Expr conditions individual logExpr## 322 HALLMARK_P53_PATHWAY CDKN1A untrt_N61311 14406.1316 untrt N61311 13.814496## 323 HALLMARK_P53_PATHWAY BTG2 untrt_N61311 1163.7198 untrt N61311 10.185767## 324 HALLMARK_P53_PATHWAY MDM2 untrt_N61311 3614.5324 untrt N61311 11.819992## 325 HALLMARK_P53_PATHWAY CCNG1 untrt_N61311 5749.1367 untrt N61311 12.489381## 326 HALLMARK_P53_PATHWAY FAS untrt_N61311 1029.4007 untrt N61311 10.008990## 327 HALLMARK_P53_PATHWAY TOB1 untrt_N61311 829.7721 untrt N61311 9.698309library(ggstatsplot)ggstatsplot::ggwithinstats( data = HALLMARK_P53_PATHWAY, x = conditions, y = logExpr, sort = "descending", # ordering groups along the x-axis based on sort.fun = median, # values of `y` variable pairwise.comparisons = TRUE, pairwise.display = "s", pairwise.annotation = "p", title = "HALLMARK_P53_PATHWAY", path.point = F, ggtheme = ggthemes::theme_fivethirtyeight(), ggstatsplot.layer = FALSE, messages = FALSE)
library(ggstatsplot)ggstatsplot::grouped_ggwithinstats( data = target_pathway_with_expr_conditions_long, x = conditions, y = logExpr, grouping.var = ont, xlab = "Condition", ylab = "CEMIP expression", path.point = F, palette = "Set1", # R color brewer ggstatsplot.layer = FALSE, messages = FALSE)
ggstatsplot::grouped_ggwithinstats(data = top6_t_with_group_long, x = conditions, y = Expr, xlab = "Condition", ylab = "CEMIP expression", grouping.var = Gene, ggstatsplot.layer = FALSE, messages = FALSE)
head(expr)## untrt_N61311 untrt_N052611 untrt_N080611 untrt_N061011 trt_N61311 trt_N052611 trt_N080611 trt_N061011## FN1 245667.66 427435.1 221687.51 371144.2 240187.24 450103.21 280226.19 376518.23## DCN 212953.14 360796.2 258977.30 408573.1 210002.18 316009.14 225547.39 393843.74## CEMIP 40996.34 137783.1 53813.92 91066.8 62301.12 223111.85 212724.84 157919.47## CCDC80 137229.15 232772.2 86258.13 212237.3 136730.76 226070.89 124634.56 236237.81## IGFBP5 77812.65 288609.2 210628.87 168067.4 96021.74 217439.21 162677.38 168387.36## COL1A1 146450.41 127367.3 152281.50 140861.1 62358.64 53800.47 69160.97 51044.06
散点图
ggstatsplot::ggscatterstats(data = expr, x = untrt_N61311, y = untrt_N052611, xlab = "untrt_N61311", ylab = "untrt_N052611", title = "Sample correlation", messages = FALSE)
ggstatsplot::ggscatterstats( data = log2(expr+1), x = untrt_N61311, y = trt_N61311, xlab = "untrt_N61311", ylab = "trt_N61311", title = "Sample correlation", #marginal.type = "density", # type of marginal distribution to be displayed messages = FALSE)
相关性图
基因共表达
gene_cor <- cor(t(top6))head(gene_cor)## KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## KCTD12 1.0000000 -0.9792624 0.9799663 -0.9619660 -0.9529732 0.9772852## MAOA -0.9792624 1.0000000 -0.9897706 0.9406196 0.9614877 -0.9871408## ARHGEF2 0.9799663 -0.9897706 1.0000000 -0.9628750 -0.9660416 0.9791535## SPARCL1 -0.9619660 0.9406196 -0.9628750 1.0000000 0.9853858 -0.9510121## PER1 -0.9529732 0.9614877 -0.9660416 0.9853858 1.0000000 -0.9615253## SLC6A9 0.9772852 -0.9871408 0.9791535 -0.9510121 -0.9615253 1.0000000pheatmap(gene_cor)
Hmisc::rcorr(as.matrix(top6_t))## KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## KCTD12 1.00 -0.98 0.98 -0.96 -0.95 0.98## MAOA -0.98 1.00 -0.99 0.94 0.96 -0.99## ARHGEF2 0.98 -0.99 1.00 -0.96 -0.97 0.98## SPARCL1 -0.96 0.94 -0.96 1.00 0.99 -0.95## PER1 -0.95 0.96 -0.97 0.99 1.00 -0.96## SLC6A9 0.98 -0.99 0.98 -0.95 -0.96 1.00## ## n= 8 ## ## ## P## KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## KCTD12 0e+00 0e+00 1e-04 3e-04 0e+00 ## MAOA 0e+00 0e+00 5e-04 1e-04 0e+00 ## ARHGEF2 0e+00 0e+00 1e-04 0e+00 0e+00 ## SPARCL1 1e-04 5e-04 1e-04 0e+00 3e-04 ## PER1 3e-04 1e-04 0e+00 0e+00 1e-04 ## SLC6A9 0e+00 0e+00 0e+00 3e-04 1e-04head(top6_t)## KCTD12 MAOA ARHGEF2 SPARCL1 PER1 SLC6A9## untrt_N61311 4700.7937 438.5445 3025.623 58.15705 170.6164 360.66314## untrt_N052611 3978.0401 452.9934 3105.783 102.58269 156.3692 413.87971## untrt_N080611 4416.1517 516.6303 3094.513 80.00997 194.9750 365.47650## untrt_N061011 4792.3417 258.7328 2909.990 82.59042 123.4769 443.71982## trt_N61311 936.6948 4628.0086 1395.398 2220.50867 1728.3812 63.90538## trt_N052611 633.4462 4429.7201 1441.992 1750.98786 1230.2575 56.89620ggstatsplot::ggcorrmat( data = top6_t, corr.method = "robust", # correlation method sig.level = 0.0001, # threshold of significance p.adjust.method = "holm", # p-value adjustment method for multiple comparisons # cor.vars = c(sleep_rem, awake:bodywt), # a range of variables can be selected # cor.vars.names = c( # "REM sleep", # variable names # "time awake", # "brain weight", # "body weight" # ), matrix.type = "upper", # type of visualization matrix palette = "Set2", #colors = c("#B2182B", "white", "#4D4D4D"), title = "Correlalogram for mammals sleep dataset", subtitle = "sleep units: hours; weight units: kilograms")
样品相关性
top100 <- head(expr,100)ggstatsplot::ggcorrmat( data = top100, corr.method = "robust", # correlation method sig.level = 0.05, # threshold of significance p.adjust.method = "holm", # p-value adjustment method for multiple comparisons # cor.vars = c(sleep_rem, awake:bodywt), # a range of variables can be selected # cor.vars.names = c( # "REM sleep", # variable names # "time awake", # "brain weight", # "body weight" # ), matrix.type = "upper", # type of visualization matrix palette = "Set2" #colors = c("#B2182B", "white", "#4D4D4D"),)
网友评论