SVD是奇异值分解,当矩阵不是方阵的时候,则这个矩阵是奇异矩阵。我们可以通过奇异值分解来获得特征矩阵。因为有的时候前10%,甚至前1%的特征值就占了剩下的和。通过SVD我们就可以压缩矩阵了。
而PCA与SVD有一曲同工之妙,一般来说,在数字信号处理中,方差大的是信号方向,方差小的是噪声方向,而我们所说的要提高信噪比也就是说要让方差大的尽可能大,让方差小的尽可能小。那如何让方差大的尽可能大呢?很简单,就是在信号的方向建立坐标系。然后在与已经建立的坐标系正交的坐标系上重复上述操作。也就是和和选取重要的特征值是一样的过程。
在估计照相机矩阵的时候,可能会出现误差或者是有噪声,为了确保照相机的旋转部分是个旋转矩阵,所以这时候也可以用SVD,旋转的最佳逼近可以由
(计算机视觉100页)
https://blog.csdn.net/xiaocong1990/article/details/54909126/
网友评论