HiveSQL解析过程详解

作者: 尼小摩 | 来源:发表于2018-05-15 23:05 被阅读88次

    Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用。美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析。Hive的稳定性和性能对我们的数据分析非常关键。

    在几次升级Hive的过程中,我们遇到了一些大大小小的问题。通过向社区的 咨询和自己的努力,在解决这些问题的同时我们对Hive将SQL编译为MapReduce的过程有了比较深入的理解。对这一过程的理解不仅帮助我们解决了 一些Hive的bug,也有利于我们优化Hive SQL,提升我们对Hive的掌控力,同时有能力去定制一些需要的功能。

    MapReduce实现基本SQL操作的原理


    详细讲解SQL编译为MapReduce之前,我们先来看看MapReduce框架实现SQL基本操作的原理

    Join的实现原理

    select u.name, o.orderid from order o join user u on o.uid = u.uid;

    在map的输出value中为不同表的数据打上tag标记,在reduce阶段根据tag判断数据来源。MapReduce的过程如下(这里只是说明最基本的Join的实现,还有其他的实现方式)

    Group By的实现原理

    select rank, isonline, count(*) from city group by rank, isonline;

    将GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。MapReduce的过程如下(当然这里只是说明Reduce端的非Hash聚合过程)

    Distinct的实现原理

    select dealid, count(distinct uid) num from order group by dealid;

    当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作 为reduce的key,在reduce阶段保存LastKey即可完成去重

    如果有多个distinct字段呢,如下面的SQL

    select dealid, count(distinct uid), count(distinct date) from order group by dealid;

    实现方式有两种:

    (1)如果仍然按照上面一个distinct字段的方法,即下图这种实现方式,无法跟据uid和date分别排序,也就无法通过LastKey去重,仍然需要在reduce阶段在内存中通过Hash去重

    (2)第二种实现方式,可以对所有的distinct字段编号,每行数据生成n行数据,那么相同字段就会分别排序,这时只需要在reduce阶段记录LastKey即可去重。

    这种实现方式很好的利用了MapReduce的排序,节省了reduce阶段去重的内存消耗,但是缺点是增加了shuffle的数据量。

    需要注意的是,在生成reduce value时,除第一个distinct字段所在行需要保留value值,其余distinct数据行value字段均可为空


    SQL转化为MapReduce的过程


    了解了MapReduce实现SQL基本操作之后,我们来看看Hive是如何将SQL转化为MapReduce任务的,整个编译过程分为六个阶段:

    1. Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree
    2. 遍历AST Tree,抽象出查询的基本组成单元QueryBlock
    3. 遍历QueryBlock,翻译为执行操作树OperatorTree
    4. 逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量
    5. 遍历OperatorTree,翻译为MapReduce任务
    6. 物理层优化器进行MapReduce任务的变换,生成最终的执行计划

    下面分别对这六个阶段进行介绍

    Phase1 SQL词法,语法解析

    Antlr

    Hive使用Antlr实现SQL的词法和语法解析。Antlr是一种语言识别的工具,可以用来构造领域语言。
    这里不详细介绍Antlr,只需要了解使用Antlr构造特定的语言只需要编写一个语法文件,定义词法和语法替换规则即可,Antlr完成了词法分析、语法分析、语义分析、中间代码生成的过程。

    Hive中语法规则的定义文件在0.10版本以前是Hive.g一个文件,随着语法规则越来越复杂,由语法规则生成的Java解析类可能超过Java类文 件的最大上限,0.11版本将Hive.g拆成了5个文件,词法规则HiveLexer.g和语法规则的4个文件 SelectClauseParser.g,FromClauseParser.g,IdentifiersParser.g,HiveParser.g。

    抽象语法树AST Tree

    经过词法和语法解析后,如果需要对表达式做进一步的处理,使用 Antlr 的抽象语法树语法Abstract Syntax Tree,在语法分析的同时将输入语句转换成抽象语法树,后续在遍历语法树时完成进一步的处理。

    下面的一段语法是Hive SQL中SelectStatement的语法规则,从中可以看出,SelectStatement包含select, from, where, groupby, having, orderby等子句。
    (在下面的语法规则中,箭头表示对于原语句的改写,改写后会加入一些特殊词标示特定语法,比如TOK_QUERY标示一个查询块)

    electStatement
       :
       selectClause
       fromClause
       whereClause?
       groupByClause?
       havingClause?
       orderByClause?
       clusterByClause?
       distributeByClause?
       sortByClause?
       limitClause? -> ^(TOK_QUERY fromClause ^(TOK_INSERT ^(TOK_DESTINATION ^(TOK_DIR TOK_TMP_FILE))
                         selectClause whereClause? groupByClause? havingClause? orderByClause? clusterByClause?
                         distributeByClause? sortByClause? limitClause?))
       ;
    

    样例SQL

    为了详细说明SQL翻译为MapReduce的过程,这里以一条简单的SQL为例,SQL中包含一个子查询,最终将数据写入到一张表中

    FROM
    (
      SELECT
        p.datekey datekey,
        p.userid userid,
        c.clienttype
      FROM
        detail.usersequence_client c
        JOIN fact.orderpayment p ON p.orderid = c.orderid
        JOIN default.user du ON du.userid = p.userid
      WHERE p.datekey = 20131118
    ) base
    INSERT OVERWRITE TABLE `test`.`customer_kpi`
    SELECT
      base.datekey,
      base.clienttype,
      count(distinct base.userid) buyer_count
    GROUP BY base.datekey, base.clienttype
    

    SQL生成AST Tree

    Antlr对Hive SQL解析的代码如下,HiveLexerX,HiveParser分别是Antlr对语法文件Hive.g编译后自动生成的词法解析和语法解析类,在这两个类中进行复杂的解析。

    HiveLexerX lexer = new HiveLexerX(new ANTLRNoCaseStringStream(command));    //词法解析,忽略关键词的大小写
    TokenRewriteStream tokens = new TokenRewriteStream(lexer);
    if (ctx != null) {
      ctx.setTokenRewriteStream(tokens);
    }
    HiveParser parser = new HiveParser(tokens);                                 //语法解析
    parser.setTreeAdaptor(adaptor);
    HiveParser.statement_return r = null;
    try {
      r = parser.statement();                                                   //转化为AST Tree
    } catch (RecognitionException e) {
      e.printStackTrace();
      throw new ParseException(parser.errors);
    }
    

    最终生成的AST Tree如下图右侧(使用Antlr Works生成,Antlr Works是Antlr提供的编写语法文件的编辑器),图中只是展开了骨架的几个节点,没有完全展开。
    子查询1/2,分别对应右侧第1/2两个部分。


    这里注意一下内层子查询也会生成一个TOK_DESTINATION节点。请看上面SelectStatement的语法规则,这个节点是在语法改写中特 意增加了的一个节点。原因是Hive中所有查询的数据均会保存在HDFS临时的文件中,无论是中间的子查询还是查询最终的结果,Insert语句最终会将 数据写入表所在的HDFS目录下。

    详细来看,将内存子查询的from子句展开后,得到如下AST Tree,每个表生成一个TOK_TABREF节点,Join条件生成一个“=”节点。其他SQL部分类似,不一一详述。

    Phase2 SQL基本组成单元QueryBlock

    AST Tree仍然非常复杂,不够结构化,不方便直接翻译为MapReduce程序,AST Tree转化为QueryBlock就是将SQL进一部抽象和结构化。

    QueryBlock

    QueryBlock是一条SQL最基本的组成单元,包括三个部分:输入源,计算过程,输出。简单来讲一个QueryBlock就是一个子查询。

    下图为Hive中QueryBlock相关对象的类图,解释图中几个重要的属性

    • QB#aliasToSubq(表示QB类的aliasToSubq属性)保存子查询的QB对象,aliasToSubq key值是子查询的别名
    • QB#qbp 即QBParseInfo保存一个基本SQL单元中的给个操作部分的AST Tree结构,QBParseInfo#nameToDest这个HashMap保存查询单元的输出,key的形式是inclause-i(由于Hive 支持Multi Insert语句,所以可能有多个输出),value是对应的ASTNode节点,即TOK_DESTINATION节点。类QBParseInfo其余 HashMap属性分别保存输出和各个操作的ASTNode节点的对应关系。
    • QBParseInfo#JoinExpr保存TOK_JOIN节点。QB#QBJoinTree是对Join语法树的结构化。
    • QB#qbm保存每个输入表的元信息,比如表在HDFS上的路径,保存表数据的文件格式等。
    • QBExpr这个对象是为了表示Union操作。

    AST Tree生成QueryBlock

    AST Tree生成QueryBlock的过程是一个递归的过程,先序遍历AST Tree,遇到不同的Token节点,保存到相应的属性中,主要包含以下几个过程

    • TOK_QUERY => 创建QB对象,循环递归子节点
    • TOK_FROM => 将表名语法部分保存到QB对象的TOK_INSERT => 循环递归子节点
    • TOK_DESTINATION => 将输出目标的语法部分保存在QBParseInfo对象的nameToDest属性中
    • TOK_SELECT => 分别将查询表达式的语法部分保存在destToAggregationExprs、TOK_WHERE => 将Where部分的语法保存在QBParseInfo对象的destToWhereExpr属性中
      最终样例SQL生成两个QB对象,QB对象的关系如下,QB1是外层查询,QB2是子查询

    QB1 \ QB2

    Phase3 逻辑操作符Operator

    相关文章

      网友评论

        本文标题:HiveSQL解析过程详解

        本文链接:https://www.haomeiwen.com/subject/ypfudftx.html