卡方检验的多种应用场景总结

作者: spssau | 来源:发表于2019-07-02 12:31 被阅读13次

T检验是比较两组定量数据均值之间是否存在显著差异的方法。如果是定类数据之间的差异性,比较均值显然不合理,而用数字出现的频数或比例进行比较,就可以不考虑数值本身的信息,直接比较出类别变量之间的关系情况。这类分析方法就被称为卡方检验。

本文将从概念、方法分类、每个方法的使用场景及案例分析对卡方检验进行介绍。

01. 概念

卡方检验是一种用途广泛的分析定类数据差异性的方法,用于比较定类与定类数据的关系情况,以及分析实际数据的比例与预期比例是否一致。

02. 方法分类

与T检验一样,卡方检验也可细分为:分析卡方优度检验、交叉表卡方、配对卡方。具体分析方法如下:

分析方法区分-SPSSAU整理

03. 卡方优度检验

卡方优度检验,是对一列数据进行统计检验,分析单个分类变量实际观测的比例与期望比例是否一致。

案例:当前收集了100份数据用于研究,其中有48名男性,52位女性。在收集数据前预期男女比例应该是4:6 (40%为男性,60%为女性),现在想分析实际收集到的数据比例与预期的比例有没有显著的差异。

 

操作步骤:

(1)卡方拟合优度检验支持两种数据格式:整理后的加权数据或原始数据。处理好数据后,上传数据到SPSSAU,开始分析。

(2)选择【实验/医学研究】→【卡方优度检验】。

如使用原始数据,直接将“性别”项放入分析框即可。

如使用加权格式数据,需要把将“性别”项放入分析框,同时在加权项中放入“个数(权重)”

加权格式

(3)设置期望值:

不勾选【期望值设置】,系统会默认各比例相等,本例中期望比例为4:6,所以需要手动设置。

 分析结果:

卡方拟合优度检验

上表格显示,男女的实际频数分别是48和52,预期频数分别是40和60;经过卡方拟合优度检验显示,实际比例和期望比例并没有呈现出显著性差异(X2=2.667,p=0.102>0.05),意味着实际情况与期望情况基本一致,无明显的差异性。

04.交叉表卡方

卡方优度检验是对一个分类变量的检验,在实际研究中,研究两组分类变量的关系更加常见,例如想要了解阅读习惯与学历是否有关,此时可使用交叉卡方。

案例:分析不同性别学生对购买理财产品的意愿是否有差异。

操作步骤:

使用路径:通用方法→交叉(卡方)  

可以选择按行统计百分数或者按列统计百分数,区别在于括号内百分数一个按列计算,一个按行计算,案例中选择“百分数(按列)”

交叉(卡方)分析结果  

结果分析:

从上表可以看出,不同性别样本对于是否购买理财产品的意愿不会表现出显著性差异,说明性别和购买理财产品之间没有联系。反之,呈现出显著性;则说明性别对购买意愿会有影响,具体差异需要通过对比百分比得到。

其他指标分析:

如果检验得出两变量之间确实存在联系(结果有显著性差异),想要进一步了解两者的相关程度,需要结合效应量指标具体分析。SPSSAU提供5种指标;分别是:Phi系数、列联系数、、校正列联系、Cramer V系数、Lambda指标。

*X或Y中有定序数据,则建议使用Lambda指标

*交叉类型表示交叉表横向格子数×纵向格子数

05. 配对卡方

除了以上两种分析场景外,有时还需要分析配对分类数据的差异性。此类数据最常见于实验研究,用不同的方法检测同一批人,看两个方法的效果是否有差异。此时可使用配对卡方检验。

案例:当前有两种办法可以诊断癌症,A方法简易且成本低廉但是准确率稍低;B方法结果可靠但操作麻烦且成本较高。共收集53名待诊患者,并且分别进行两种方法诊断,现希望通过研究判断两种诊断方法是否有差异。​此数据为配对数据,而且为定类数据(诊断结果为定类数据),因而需要使用配对卡方检验。

操作步骤:

使用路径:SPSSAU→医学研究→配对卡方  

结果分析:

配对卡方分析结果

配对卡方有两种检验统计量,分别是McNemar检验和Bowker检验。二者的区别如下:

本案例中两种方法均只有阳性和阴性两种结果时,因此选择McNemar检验,SPSSAU会自动判断,匹配合适的方法。

智能分析结果

06. 其他说明

事实上,计算卡方值的方法不止一种,常见包括Pearson卡方,yates校正卡方,fisher卡方,具体要结合期望频数、R*C交叉类型等选择采不同的检验方法。SPSSAU可自动选择最优方法,因此不需单独考虑使用哪种方法。

更多干货内容可到SPSSAU官网查看。

相关文章

  • 卡方检验的多种应用场景总结

    T检验是比较两组定量数据均值之间是否存在显著差异的方法。如果是定类数据之间的差异性,比较均值显然不合理,而用数字出...

  • T检验、F检验和卡方检验

    T检验、F检验、卡方检验是统计学中常见的假设检验,今天记录下这几个假设检验的原理和应用场景。 检验方法应用场景T检...

  • 医学临床试验文献统计方法解读(卡方检验)

    四、卡方检验 (一)文献中应用 文献中如此描述卡方检验的应用:”卡方检验用来比较试验组和控制组在被试分布、移植物分...

  • 卡方检验

    ①四格表卡方检验 ②配对卡方检验 ③RxC卡方检验

  • 干货!一文汇总卡方检验分析步骤

    一、类型 SPSSAU中卡方检验包括卡方检验、卡方拟合优度、配对卡方、分层卡方。 对于上述四种卡方检验区别如下: ...

  • 卡方检验原理及应用

    https://segmentfault.com/a/1190000003719712 http://blog.c...

  • 卡方检验原理及应用

    卡方检验,或称x2检验,被誉为二十世纪科学技术所有分支中的20大发明之一,它的发明者卡尔·皮尔逊是一位历史上罕见的...

  • R实战|卡方检验及其可视化

    R实战|卡方检验及其可视化 卡方检验 卡方检验是一种以χ 2 分布为基础的用途广泛的假设检验方法。是一种非参数检验...

  • 白话“卡方检验”

    白话“卡方检验” 什么是“卡方检验”? 卡方检验是假设检验的一种,用于分析两个类别变量的相关关系,是一种非参数假设...

  • R 数据可视化 —— Q-Q 图

    前言 检验数据的分布有很多种方法,如卡方检验、K-S 检验等。 而以图形的角度来说,可以使用 Q-Q 图或 P-P...

网友评论

    本文标题:卡方检验的多种应用场景总结

    本文链接:https://www.haomeiwen.com/subject/yqlzcctx.html