美文网首页
数据分析之numpy介绍1

数据分析之numpy介绍1

作者: 熊文鑫 | 来源:发表于2019-01-06 16:36 被阅读0次

    爬虫没学两天,数据分析课就来了。

    使用numpy创建数组

    介绍numpy数组的属性和简单操作

    import numpy
    #delimiter设置定界符
    world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",")
    print(type(world_alcohol))#类型是多维数组
    
    <type 'numpy.ndarray'>
    
    #The numpy.array() function can take a list or list of lists as input. When we input a list, we get a one-dimensional array as a result:
    #(输入一维列表,得到一位数组。)
    vector = numpy.array([5, 10, 15, 20])#创建数组
    #When we input a list of lists, we get a matrix as a result:,
    #输入多维列表,得到多维数组。
    matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]])
    print vector#一维数组
    print matrix#二维数组
    
    [ 5 10 15 20]
    
    [[ 5 10 15]
     [20 25 30]
     [35 40 45]]
    
    #We can use the ndarray.shape property to figure out how many elements are in the array
    #使用.shape属性来判断数组中有多少个元素)
    vector = numpy.array([1, 2, 3, 4])
    print(vector.shape)#数组(矩阵结构),通过结构我们可以看到数据的特征。
    #For matrices, the shape property contains a tuple with 2 elements.
    #一般矩阵是二维,所以shape属性值是一个两个元素组成的元组。
    matrix = numpy.array([[5, 10, 15], [20, 25, 30]])
    print(matrix.shape)
    
    (4,)
    (2, 3)
    
    #Each value in a NumPy array has to have the same data type
    #numpy数组中所有元素的类型必须相同
    #NumPy will automatically figure out an appropriate data type when reading in data or converting lists to arrays. 
    #numpy创建数组时会自适应的指定数组类型。
    #You can check the data type of a NumPy array using the dtype property.
    #使用dtype属性查看数组的元素的数据类型
    numbers = numpy.array([1, 2, 3, 4])
    numbers.dtype#data type 数据元素结构必须相同
    
    dtype('int32')
    
    #When NumPy can't convert a value to a numeric data type like float or integer, it uses a special nan value that stands for Not a Number。
    #非数字值以nan代替
    #nan is the missing data(nan代表数据缺失)
    #1.98600000e+03 is actually 1.986 * 10 ^ 3(科学计数法)
    world_alcohol#文件读取
    
    array([[             nan,              nan,              nan,
                         nan,              nan],
           [  1.98600000e+03,              nan,              nan,
                         nan,   0.00000000e+00],
           [  1.98600000e+03,              nan,              nan,
                         nan,   5.00000000e-01],
           ..., 
           [  1.98700000e+03,              nan,              nan,
                         nan,   7.50000000e-01],
           [  1.98900000e+03,              nan,              nan,
                         nan,   1.50000000e+00],
           [  1.98500000e+03,              nan,              nan,
                         nan,   3.10000000e-01]])
    
    world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",", dtype="U75", skip_header=1)
    print(world_alcohol)
    
    [[u'1986' u'Western Pacific' u'Viet Nam' u'Wine' u'0']
     [u'1986' u'Americas' u'Uruguay' u'Other' u'0.5']
     [u'1985' u'Africa' u"Cte d'Ivoire" u'Wine' u'1.62']
     ..., 
     [u'1987' u'Africa' u'Malawi' u'Other' u'0.75']
     [u'1989' u'Americas' u'Bahamas' u'Wine' u'1.5']
     [u'1985' u'Africa' u'Malawi' u'Spirits' u'0.31']]
    
    uruguay_other_1986 = world_alcohol[1,4]
    third_country = world_alcohol[2,2]
    print uruguay_other_1986
    print third_country
    
    0.5
    Cte d'Ivoire
    
    vector = numpy.array([5, 10, 15, 20])
    print(vector[0:3])  #数组的切片,找出索引为0,1,2的元素
    
    [ 5 10 15]
    
    matrix = numpy.array([
                        [5, 10, 15], 
                        [20, 25, 30],
                        [35, 40, 45]
                     ])
    print(matrix[:,1])
    #打印所有行的索引为1的元素
    
    [10 25 40]
    
    matrix = numpy.array([
                        [5, 10, 15], 
                        [20, 25, 30],
                        [35, 40, 45]
                     ])
    print(matrix[:,0:2])
    #打印所有行的索引为0,1的元素
    
    [[ 5 10]
     [20 25]
     [35 40]]
    
    matrix = numpy.array([
                        [5, 10, 15], 
                        [20, 25, 30],
                        [35, 40, 45]
                     ])
    print(matrix[1:3,0:2])
    #打印索引为1,2的行的列索引为0,1的元素
    
    [[20 25]
     [35 40]]
    

    相关文章

      网友评论

          本文标题:数据分析之numpy介绍1

          本文链接:https://www.haomeiwen.com/subject/yrbsrqtx.html