人脸检测:cascade cnn,mtcnn,都可以通过下面代码复现。但是下面的实现是比较low的,后面更新FCN的方法。
注意mtcnn的标签加了回归框,训练时候的输出层要作修改:(回归框的作用还是很大的)
compute bbox reg label,其中x1,x2,y1,y2为真实的人脸坐标,x_left,x_right,y_top,y_bottom,width,height为预测的人脸坐标,
如果是在准备人脸和非人脸样本的时候,x_left,x_right,y_top,y_bottom,width,height就是你的滑动窗与真实人脸的IOU>0.6(根据你的定义)的滑动窗坐标。
offset_x1 = (x1 - x_left) / float(width)
offset_y1 = (y1 - y_top) / float(height)
offset_x2 = (x2 - x_right) / float(width)
offset_y2 = (y2 - y_bottom ) / float(height)
tensorflow:12-net训练
train_net_12.py : face_AELW文件夹下包含有人脸和非人脸两个文件夹。
import tensorflow as tf
import cv2
import os
import csv
from pandas import read_csv
import random
import numpy as np
import utils
filename = '/Users/liupeng/Desktop/anaconda/Dlib/face_AFLW'
# 该本分可以保存到txt文件中,可以节省加载时间,另外可以通过判断文件名,给人脸和非人脸加标签。
text_data = []
label = 0
for filename1 in os.listdir(filename):
#print (filename1)
label = label + 1
if (filename1[0] != '.'):
filename1 = filename + '/' + filename1
for filename2 in os.listdir(filename1):
#print (filename2)
if (filename2[0] != '.' ):
#print (filename2)
filename2 = filename1 + '/' + filename2
image = cv2.imread(filename2)
if image is None:
continue
text_data.append(filename2 + ' ' + str(label-2))
text_data = [x.split(' ') for x in text_data]
random.shuffle(text_data)
train_image = []
train_label = []
for i in range(len(text_data)):
train_image.append(text_data[i][0])
train_label.append(text_data[i][1])
#print (train_image)
print (train_label)
batch_size = 128
IMAGE_SIZE = 12
def get_next_batch(pointer):
batch_x = np.zeros([batch_size, IMAGE_SIZE, IMAGE_SIZE, 3])
batch_y = np.zeros([batch_size, 2])
# images = train_image[pointer*batch_size : (pointer+1)*batch_size]
# label = train_label[pointer*batch_size : (pointer+1)*batch_size]
for i in range(batch_size):
image = cv2.imread(train_image[i+pointer*batch_size])
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
image = (image - 127.5)*0.0078125
'''m = image.mean()
s = image.std()
min_s = 1.0/(np.sqrt(image.shape[0]*image.shape[1]*image.shape[2]))
std = max(min_s, s)
image = (image-m)/std'''
batch_x[i,:] = image.astype('float32') #/ 255.0
# print (batch_x[i])
if train_label[i+pointer*batch_size] == '0':
batch_y[i,0] = 1
else:
batch_y[i,1] = 1
# print (train_image[i+pointer*batch_size],batch_y[i])
return batch_x, batch_y
# 网络可以加深一点。改成 3 -> 16 3*3(SAME) pooling -> 32 3*3(SAME) pooling -> 32 3*3(VALID) -> 2
def fcn_12_detect(threshold, dropout=False, activation=tf.nn.relu):
imgs = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3])
labels = tf.placeholder(tf.float32, [None, 2])
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
with tf.variable_scope('net_12'):
conv1,_ = utils.conv2d(x=imgs, n_output=16, k_w=3, k_h=3, d_w=1, d_h=1, name="conv1")
conv1 = activation(conv1)
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="SAME", name="pool1")
ip1,W1 = utils.conv2d(x=pool1, n_output=16, k_w=6, k_h=6, d_w=1, d_h=1, padding="VALID", name="ip1")
ip1 = activation(ip1)
if dropout:
ip1 = tf.nn.dropout(ip1, keep_prob)
ip2,W2 = utils.conv2d(x=ip1, n_output=2, k_w=1, k_h=1, d_w=1, d_h=1, name="ip2")
pred = tf.nn.sigmoid(utils.flatten(ip2))
target = utils.flatten(labels)
regularizer = 8e-3 * (tf.nn.l2_loss(W1)+100*tf.nn.l2_loss(W2))
loss = tf.reduce_mean(tf.div(tf.add(-tf.reduce_sum(target * tf.log(pred + 1e-9),1), -tf.reduce_sum((1-target) * tf.log(1-pred + 1e-9),1)),2)) + regularizer
cost = tf.reduce_mean(loss)
predict = pred
max_idx_p = tf.argmax(predict, 1)
max_idx_l = tf.argmax(target, 1)
correct_pred = tf.equal(max_idx_p, max_idx_l)
acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
thresholding_12 = tf.cast(tf.greater(pred, threshold), "float")
recall_12 = tf.reduce_sum(tf.cast(tf.logical_and(tf.equal(thresholding_12, tf.constant([1.0])), tf.equal(target, tf.constant([1.0]))), "float")) / tf.reduce_sum(target)
'''
correct_prediction = tf.equal(tf.cast(tf.greater(pred, threshold), tf.int32), tf.cast(target, tf.int32))
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))'''
return {'imgs': imgs, 'labels': labels, 'keep_prob': keep_prob,
'cost': cost, 'pred': pred, 'accuracy': acc, 'features': ip1,
'recall': recall_12, 'thresholding': thresholding_12}
def train():
net_output = fcn_12_detect(0.0)
global_step = tf.Variable(0, tf.int32)
starter_learning_rate = 0.00001
learning_rate = tf.train.exponential_decay(
learning_rate=starter_learning_rate,
global_step=global_step,
decay_steps=1000,
decay_rate=1.0,
staircase=True,
name=None)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(net_output['cost'], global_step=global_step)
sess = tf.Session()
saver = tf.train.Saver(tf.trainable_variables())
# import pdb; pdb.set_trace()
sess.run(tf.initialize_all_variables())
saver.restore(sess, 'model/model_net_12-123100')
for j in range(2000):
for i in range(700):
imgs, labels = get_next_batch(i)
# labels = labels.reshape((labels.shape[0]))
if i%300==0 and i!=0:
saver.save(sess, 'model/model_net_12', global_step=global_step, write_meta_graph=False)
if i%1==0:
img, label = get_next_batch(700+i%50)
cost, accuracy, recall, lr, pre = sess.run(
[net_output['cost'], net_output['accuracy'], net_output['recall'], learning_rate, net_output['pred']],
feed_dict={net_output['imgs']: img, net_output['labels']: label})
print("Step %d, cost: %f, acc: %f, recall: %f, lr: %f"%(i, cost, accuracy, recall, lr))
print (pre[0], label[0])
print (pre[1], label[1])
print (pre[2], label[2])
print (pre[3], label[3])
print (pre[4], label[4])
# print("target: ", target)
# print("pred: ", pred)
# train
sess.run(train_step, feed_dict={net_output['imgs']: imgs, net_output['labels']: labels})
sess.close()
def test():
image = cv2.imread('images/8.jpg')
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
m = image.mean()
s = image.std()
min_s = 1.0/(np.sqrt(image.shape[0]*image.shape[1]*image.shape[2]))
std = max(min_s, s)
image = (image-m)/std
image = image.astype('float32') #/ 255
net_12 = fcn_12_detect(0.0)
saver = tf.train.Saver()
sess = tf.Session()
# saver.restore(sess, tf.train.latest_checkpoint('/Users/liupeng/Desktop/anaconda/i_code', 'checkpoint'))
sess.run(tf.initialize_all_variables())
print ('start restore model')
saver.restore(sess, 'model/model_net_12-71400')
print ('ok')
# saver.restore(sess, tf.train.latest_checkpoint('.'))
# predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
predict = sess.run(net_12['pred'], feed_dict={net_12['imgs']: [image]})
print ("predict:", predict)
return predict
if __name__ == '__main__':
train()
# test()
utils.py
import tensorflow as tf
def conv2d(x, n_output,
k_h=5, k_w=5, d_h=2, d_w=2,
padding='SAME', name='conv2d', reuse=None):
"""Helper for creating a 2d convolution operation.
Parameters
----------
x : tf.Tensor
Input tensor to convolve.
n_output : int
Number of filters.
k_h : int, optional
Kernel height
k_w : int, optional
Kernel width
d_h : int, optional
Height stride
d_w : int, optional
Width stride
padding : str, optional
Padding type: "SAME" or "VALID"
name : str, optional
Variable scope
Returns
-------
op : tf.Tensor
Output of convolution
"""
with tf.variable_scope(name or 'conv2d', reuse=reuse):
W = tf.get_variable(
name='W',
shape=[k_h, k_w, x.get_shape()[-1], n_output],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(
name='conv',
input=x,
filter=W,
strides=[1, d_h, d_w, 1],
padding=padding)
b = tf.get_variable(
name='b',
shape=[n_output],
initializer=tf.constant_initializer(0.0))
h = tf.nn.bias_add(
name='h',
value=conv,
bias=b)
return h, W
def linear(x, n_output, name=None, activation=None, reuse=None):
"""Fully connected layer.
Parameters
----------
x : tf.Tensor
Input tensor to connect
n_output : int
Number of output neurons
name : None, optional
Scope to apply
Returns
-------
h, W : tf.Tensor, tf.Tensor
Output of fully connected layer and the weight matrix
"""
if len(x.get_shape()) != 2:
x = flatten(x, reuse=reuse)
n_input = x.get_shape().as_list()[1]
with tf.variable_scope(name or "fc", reuse=reuse):
W = tf.get_variable(
name='W',
shape=[n_input, n_output],
dtype=tf.float32,
initializer=tf.tf.contrib.layers.xavier_initializer())
b = tf.get_variable(
name='b',
shape=[n_output],
dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
h = tf.nn.bias_add(
name='h',
value=tf.matmul(x, W),
bias=b)
if activation:
h = activation(h)
return h, W
def flatten(x, name=None, reuse=None):
"""Flatten Tensor to 2-dimensions.
Parameters
----------
x : tf.Tensor
Input tensor to flatten.
name : None, optional
Variable scope for flatten operations
Returns
-------
flattened : tf.Tensor
Flattened tensor.
"""
with tf.variable_scope('flatten'):
dims = x.get_shape().as_list()
if len(dims) == 4:
flattened = tf.reshape(
x,
shape=[-1, dims[1] * dims[2] * dims[3]])
elif len(dims) == 2 or len(dims) == 1:
flattened = x
else:
raise ValueError('Expected n dimensions of 1, 2 or 4. Found:',
len(dims))
return flattened
def lrelu(features, leak=0.2):
"""Leaky rectifier.
Parameters
----------
features : tf.Tensor
Input to apply leaky rectifier to.
leak : float, optional
Percentage of leak.
Returns
-------
op : tf.Tensor
Resulting output of applying leaky rectifier activation.
"""
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * features + f2 * abs(features)
train_net_24.py 参考train_net_12.py,加深一下网络,自己写吧。。。。
下面是滑动窗人脸检测的流程:
(1)确定最小检测人脸,对原图img缩放,缩放比例为(滑动窗大小/最小人脸大小)。
(2)缩放后的图片,构建金字塔。
(3)对金字塔的每一层,通过滑动窗获取patch,对patch归一化处理,之后给训练好的人脸检测器识别,将识别为人脸的窗口位置和概率保存。
(4)将人脸窗口映射到原图img中的人脸位置,概率不变。
(5)NMS处理重叠窗口。
(6)级联的方式提高准确率。
(7)在原图画出人脸位置。
*****调节的参数有:
# 步长
stride = 2
# 最小人脸大小
F = 40
# 构建金字塔的比例
ff = 0.8
# 概率多大时判定为人脸?
p = 0.8
# nms
overlapThresh_12 = 0.7
overlapThresh_24 = 0.7
下面不是完成代码,需要自己添加训练好的model,稍作修改就可以。
import numpy as np
import tensorflow as tf
from model import fcn_12_detect
def py_nms(dets, thresh, mode="Union"):
"""
greedily select boxes with high confidence
keep boxes overlap <= thresh
rule out overlap > thresh
:param dets: [[x1, y1, x2, y2 score]]
:param thresh: retain overlap <= thresh
:return: indexes to keep
"""
if len(dets) == 0:
return []
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if mode == "Union":
ovr = inter / (areas[i] + areas[order[1:]] - inter)
elif mode == "Minimum":
ovr = inter / np.minimum(areas[i], areas[order[1:]])
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return dets[keep]
def image_preprocess(img):
img = (img - 127.5)*0.0078125
'''m = img.mean()
s = img.std()
min_s = 1.0/(np.sqrt(img.shape[0]*img.shape[1]*img.shape[2]))
std = max(min_s, s)
img = (img-m)/std'''
return img
def slide_window(img, window_size, stride):
# 对构建的金字塔图片,滑动窗口。
# img:图片, window_size:滑动窗的大小,stride:步长。
window_list = []
w = img.shape[1]
h = img.shape[0]
if w<=window_size+stride or h<=window_size+stride:
return None
if len(img.shape)!=3:
return None
for i in range(int((w-window_size)/stride)):
for j in range(int((h-window_size)/stride)):
box = [j*stride, i*stride, j*stride+window_size, i*stride+window_size]
window_list.append(box)
return img, np.asarray(window_list)
def pyramid(image, f, window_size):
# 构建图像的金字塔,以便进行多尺度滑动窗口
# image:输入图像,f:缩放的尺度, window_size:滑动窗大小。
w = image.shape[1]
h = image.shape[0]
img_ls = []
while( w > window_size and h > window_size):
img_ls.append(image)
w = int(w * f)
h = int(h * f)
image = cv2.resize(image, (w, h))
return img_ls
def min_face(img, F, window_size, stride):
# img:输入图像,F:最小人脸大小, window_size:滑动窗,stride:滑动窗的步长。
h, w, _ = img.shape
w_re = int(float(w)*window_size/F)
h_re = int(float(h)*window_size/F)
if w_re<=window_size+stride or h_re<=window_size+stride:
print (None)
# 调整图片大小的时候注意参数,千万不要写反了
# 根据最小人脸缩放图片
img = cv2.resize(img, (w_re, h_re))
return img
if __name__ = "__main__":
image = cv2.imread('images/1.jpg')
h,w,_ = image.shape
......
# 调参的参数
IMAGE_SIZE = 12
# 步长
stride = 2
# 最小人脸大小
F = 40
# 构建金字塔的比例
ff = 0.8
# 概率多大时判定为人脸?
p_12 = 0.8
p_24 = 0.8
# nms
overlapThresh_12 = 0.7
overlapThresh_24 = 0.3
......
# 加载 model
net_12 = fcn_12_detect()
net_12_vars = [v for v in tf.trainable_variables() if v.name.startswith('net_12')]
saver_net_12 = tf.train.Saver(net_12_vars)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
saver_net_12.restore(sess, 'model/12-net/model_net_12-123200')
# net_24...
......
# 需要检测的最小人脸
image_ = min_face(image, F, IMAGE_SIZE, stride)
......
# 金字塔
pyd = pyramid(np.array(image_), ff, IMAGE_SIZE)
......
# net-12
window_after_12 = []
for i, img in enumerate(pyd):
# 滑动窗口
slide_return = slide_window(img, IMAGE_SIZE, stride)
if slide_return is None:
break
img_12 = slide_return[0]
window_net_12 = slide_return[1]
w_12 = img_12.shape[1]
h_12 = img_12.shape[0]
patch_net_12 = []
for box in window_net_12:
patch = img_12[box[0]:box[2], box[1]:box[3], :]
# 做归一化处理
patch = image_preprocess(patch)
patch_net_12.append(patch)
patch_net_12 = np.array(patch_net_12)
# 预测人脸
pred_cal_12 = sess.run(net_12['pred'], feed_dict={net_12['imgs']: patch_net_12})
window_net = window_net_12
# print (pred_cal_12)
windows = []
for i, pred in enumerate(pred_cal_12):
# 概率大于0.8的判定为人脸。
s = np.where(pred[1]>p_12)[0]
if len(s)==0:
continue
#保存窗口位置和概率。
windows.append([window_net[i][0],window_net[i][1],window_net[i][2],window_net[i][3],pred[1]])
# 按照概率值 由大到小排序
windows = np.asarray(windows)
windows = py_nms(windows, overlapThresh_12, 'Union')
window_net = windows
for box in window_net:
lt_x = int(float(box[0])*w/w_12)
lt_y = int(float(box[1])*h/h_12)
rb_x = int(float(box[2])*w/w_12)
rb_y = int(float(box[3])*h/h_12)
p_box = box[4]
window_after_12.append([lt_x, lt_y, rb_x, rb_y, p_box])
# 按照概率值 由大到小排序
# window_after_12 = np.asarray(window_after_12)
# window_net = py_nms(window_after_12, overlapThresh_12, 'Union')
window_net = window_after_12
print (window_net)
# net-24
windows_24 = []
if window_net == []:
print "windows is None!"
if window_net != []:
patch_net_24 = []
img_24 = image
for box in window_net:
patch = img_24[box[0]:box[2], box[1]:box[3], :]
patch = cv2.resize(patch, (24, 24))
# 做归一化处理
patch = image_preprocess(patch)
patch_net_24.append(patch)
# 预测人脸
pred_net_24 = sess.run(net_24['pred'], feed_dict={net_24['imgs']: patch_net_24})
print (pred_net_24)
window_net = window_net
# print (pred_net_24)
for i, pred in enumerate(pred_net_24):
s = np.where(pred[1]>p_24)[0]
if len(s)==0:
continue
windows_24.append([window_net[i][0],window_net[i][1],window_net[i][2],window_net[i][3],pred[1]])
# 按照概率值 由大到小排序
windows_24 = np.asarray(windows_24)
#window_net = nms_max(windows_24, overlapThresh=0.7)
window_net = py_nms(windows_24, overlapThresh_24, 'Union')
if window_net == []:
print "windows is None!"
if window_net != []:
print(window_net.shape)
for box in window_net:
#ImageDraw.Draw(image).rectangle((box[1], box[0], box[3], box[2]), outline = "red")
cv2.rectangle(image, (int(box[1]),int(box[0])), (int(box[3]),int(box[2])), (0, 255, 0), 2)
cv2.imwrite("images/face_img.jpg", image)
cv2.imshow("face detection", image)
cv2.waitKey(10000)
cv2.destroyAllWindows()
coord.request_stop()
coord.join(threads)
sess.close()
检测结果:(下面的重叠窗口可以通过设置overlapThresh去除)
20170903113941123.jpg 20170903130732564.jpg
网友评论