美文网首页
Java 能创建多少线程

Java 能创建多少线程

作者: Java编程日记 | 来源:发表于2022-03-23 14:51 被阅读0次
    1. java 最多能创建多少线程? 由以下因素限制:

    a. stack_size

    b. max_user_processes

    c. sys.vm.max_map_count

    d. sys.kernel.threads-max

    e. sys.kernel.pid_max

    1. java 线程的栈深能有多深?

    a. stack_size

    b. 本地变量表

    1. java 最多能创建多少线程?

    java 中的线程跟 linux 线程是 1:1 关系, 在java 中 new Thread() 为创建一个java 线程, Thread().start() 为启动java 线程, 但是 new Thread() 不会创建一个真正的 linux 线程,而是调用 start 方法之后 Thread().start(),才会创建一个真正 linux 线程。Thread的构造函数是纯Java代码,start方法会调到一个native方法start0里,而start0其实就是JVM_StartThread这个方法。

    openjdk: 1.8

    jdk/src/hotspot/share/prims/jvm.cpp#2634

    JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread))
      ...
          jlong size =
                 java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread));
          size_t sz = size > 0 ? (size_t) size : 0;
          native_thread = new JavaThread(&thread_entry, sz);
          ...
      if (native_thread->osthread() == NULL) {
        ...
        THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
                  "unable to create new native thread");
      }
      Thread::start(native_thread);
    JVM_END
    
    

    关注下最后的那个if判断if (native_thread->osthread() == NULL),如果osthread为空,那将会抛出大家比较熟悉的unable to create new native thread OOM异常,因此osthread为空非常关键,后面会看到什么情况下osthread会为空。

    另外大家应该注意到了native_thread = new JavaThread(&thread_entry, sz),在这里才会真正创建一个线程。

    openjdk: 1.8

    jdk/src/hotspot/share/runtime/thread.cpp#1443

    JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
      Thread()
    #ifndef SERIALGC
      , _satb_mark_queue(&_satb_mark_queue_set),
      _dirty_card_queue(&_dirty_card_queue_set)
    #endif // !SERIALGC
    {
      if (TraceThreadEvents) {
        tty->print_cr("creating thread %p", this);
      }
      initialize();
      _jni_attach_state = _not_attaching_via_jni;
      set_entry_point(entry_point);
      // Create the native thread itself.
      // %note runtime_23
      os::ThreadType thr_type = os::java_thread;
      thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
                                                         os::java_thread;
      os::create_thread(this, thr_type, stack_sz);
    }
    
    

    上面代码里的os::create_thread(this, thr_type, stack_sz)会通过pthread_create来创建线程,对应 代码如下:

    openjdk: 1.8

    jdk/src/hotspot/os/linux/os_linux.cpp#891

    bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
      assert(thread->osthread() == NULL, "caller responsible");
      // Allocate the OSThread object
      OSThread* osthread = new OSThread(NULL, NULL);
      if (osthread == NULL) {
        return false;
      }
      // set the correct thread state
      osthread->set_thread_type(thr_type);
      // Initial state is ALLOCATED but not INITIALIZED
      osthread->set_state(ALLOCATED);
      thread->set_osthread(osthread);
      // init thread attributes
      pthread_attr_t attr;
      pthread_attr_init(&attr);
      pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
      // stack size
      if (os::Linux::supports_variable_stack_size()) {
        // calculate stack size if it's not specified by caller
        if (stack_size == 0) {
          stack_size = os::Linux::default_stack_size(thr_type);
          switch (thr_type) {
          case os::java_thread:
            // Java threads use ThreadStackSize which default value can be
            // changed with the flag -Xss
            assert (JavaThread::stack_size_at_create() > 0, "this should be set");
            stack_size = JavaThread::stack_size_at_create();
            break;
          case os::compiler_thread:
            if (CompilerThreadStackSize > 0) {
              stack_size = (size_t)(CompilerThreadStackSize * K);
              break;
            } // else fall through:
              // use VMThreadStackSize if CompilerThreadStackSize is not defined
          case os::vm_thread:
          case os::pgc_thread:
          case os::cgc_thread:
          case os::watcher_thread:
            if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
            break;
          }
        }
        stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
        pthread_attr_setstacksize(&attr, stack_size);
      } else {
        // let pthread_create() pick the default value.
      }
      // glibc guard page
      pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
      ThreadState state;
      {
        // Serialize thread creation if we are running with fixed stack LinuxThreads
        bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
        if (lock) {
          os::Linux::createThread_lock()->lock_without_safepoint_check();
        }
        pthread_t tid;
        int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
        pthread_attr_destroy(&attr);
        if (ret != 0) {
          if (PrintMiscellaneous && (Verbose || WizardMode)) {
            perror("pthread_create()");
          }
          // Need to clean up stuff we've allocated so far
          thread->set_osthread(NULL);
          delete osthread;
          if (lock) os::Linux::createThread_lock()->unlock();
          return false;
        }
        // Store pthread info into the OSThread
        osthread->set_pthread_id(tid);
        ...
      }
      ...
      return true;
    }
    
    

    如果在new OSThread的过程中就失败了,那显然osthread为NULL,那再回到上面第一段代码,此时会抛出
    java.lang.OutOfMemoryError: unable to create new native thread的异常,而什么情况下new OSThread会失败,比如说内存不够了,而这里的内存其实是C Heap,而非Java Heap,指的是Linux 剩余内存。由此可见从JVM的角度来说,影响线程创建的因素包括了Xmx,MaxPermSize,MaxDirectMemorySize,ReservedCodeCacheSize等,因为这些参数会影响剩余的内存 。

    另外注意到如果pthread_create执行失败,那通过thread->set_osthread(NULL)会设置空值,这个时候osthread也为NULL,因此也会抛出上面的OOM异常,导致创建线程失败,因此接下来要分析下pthread_create失败的因素。

    glibc

    pthread_create的实现在glibc里。

    glibc

    glibc/sysdeps/unix/sysv/linux/createthread.c#624

    int
    __pthread_create_2_1 (pthread_t *newthread, const pthread_attr_t *attr,
                          void *(*start_routine) (void *), void *arg)
    {
      STACK_VARIABLES;
      const struct pthread_attr *iattr = (struct pthread_attr *) attr;
      struct pthread_attr default_attr;
      ...
      struct pthread *pd = NULL;
      int err = ALLOCATE_STACK (iattr, &pd);
      int retval = 0;
      if (__glibc_unlikely (err != 0))
        {
          retval = err == ENOMEM ? EAGAIN : err;
          goto out;
        }
      ...
     }
    
    

    上面我主要想说的一段代码是int err = ALLOCATE_STACK (iattr, &pd),顾名思义就是分配线程栈,简单来说就是根据iattr里指定的stackSize,通过mmap分配一块内存出来给线程作为栈使用。

    那我们来说说stackSize,这个大家应该都明白,线程要执行,要有一些栈空间,试想一下,如果分配栈的时候内存不够了,是不是创建肯定失败?而stackSize在JVM下是可以通过-Xss指定的,当然如果没有指定也有默认的值,下面是JDK6之后(含)默认值的情况。

    openjdk: 1.8

    文件位置
    :jdk/src/hotspot/os_cpu/linux_x86/os_linux_x86.cpp#494

    // return default stack size for thr_type
    size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
      // default stack size (compiler thread needs larger stack)
    #ifdef AMD64
      size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
    #else
      size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
    #endif // AMD64
      return s;
    }
    
    

    估计不少人有一个疑问,栈内存到底属于-Xmx控制的Java Heap里的部分吗,这里明确告诉大家不属于,因此从glibc的这块逻辑来看,JVM里的Xss也是影响线程创建的一个非常重要的因素。也就是 stack_size。

    Linux

    如果栈分配成功,那接下来就要创建线程了,大概逻辑如下:

    openjdk: 1.8

    jdk/src/hotspot/os/linux/os_linux.cpp#891

    static int create_thread (struct pthread *pd, const struct pthread_attr *attr,
            bool *stopped_start, void *stackaddr,
            size_t stacksize, bool *thread_ran)
    {
      struct clone_args args =
        {
          .flags = clone_flags,
          .pidfd = (uintptr_t) &pd->tid,
          .parent_tid = (uintptr_t) &pd->tid,
          .child_tid = (uintptr_t) &pd->tid,
          .stack = (uintptr_t) stackaddr,
          .stack_size = stacksize,
          .tls = (uintptr_t) tp,
        };
      int ret = __clone_internal (&args, &start_thread, pd);
      if (__glibc_unlikely (ret == -1))
        return errno;
     ...
    }
    
    

    而create_thread其实是调用的系统调用clone ,clone系统调用最终会调用do_fork方法,接下来通过剖解这个方法来分析Kernel里还存在哪些因素。

    max_user_process

    linux: 3.10

    kernel/fork.c#1199

    retval = -EAGAIN;
      if (atomic_read(&p->real_cred->user->processes) >=
          task_rlimit(p, RLIMIT_NPROC)) {
        if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
            p->real_cred->user != INIT_USER)
          goto bad_fork_free;
      }
    
    

    先看这么一段,这里其实就是判断用户的进程数有多少,大家知道在linux下,进程和线程其数据结构都是一样的,因此这里说的进程数可以理解为轻量级线程数,而这个最大值是可以通过ulimit -u可以查到的,所以如果当前用户起的线程数超过了这个限制,那肯定是不会创建线程成功的。

    max_map_count

    在这个过程中不乏有malloc的操作,底层是通过系统调用brk来实现的,或者上面提到的栈是通过mmap来分配的,不管是malloc还是mmap,在底层都会有类似的判断

    linux: 3.10

    mm/mmap.c#2480

    if (mm->map_count >= sysctl_max_map_count)
        return -ENOMEM;
    
    

    如果进程被分配的内存段超过sysctl_max_map_count就会失败,而这个值在linux下对应
    /proc/sys/vm/max_map_count,默认值是65530,可以通过修改上面的文件来改变这个阈值。

    max_threads

    linux: 3.10

    kernel/fork.c#1217

    /*
       * If multiple threads are within copy_process(), then this check
       * triggers too late. This doesn't hurt, the check is only there
       * to stop root fork bombs.
       */
      retval = -EAGAIN;
      if (nr_threads >= max_threads)
        goto bad_fork_cleanup_count;
    

    该值是系统全局(包括非 JVM 进程)最大线程数。查看和修改该值:
    /proc/sys/kernel/threads-max,这个值是受到物理内存的限制,在fork_init的时候就计算好了,也就是说linux 主机内存越大改值越大。

    linux: 3.10

    kernel/fork.c#267

    /*
       * The default maximum number of threads is set to a safe
       * value: the thread structures can take up at most half
       * of memory.
       */
      max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
      /*
       * we need to allow at least 20 threads to boot a system
       */
      if (max_threads < 20)
        max_threads = 20;
    
    

    pid_max

    pid也存在限制

    linux: 3.10

    kernel/fork.c#1350

    if (pid != &init_struct_pid) {
        retval = -ENOMEM;
        pid = alloc_pid(p->nsproxy->pid_ns);
        if (!pid)
          goto bad_fork_cleanup_io;
      }
    
    

    而alloc_pid的定义如下:

    linux: 3.10

    kernel/pid.c#287

    struct pid *alloc_pid(struct pid_namespace *ns)
    {
      struct pid *pid;
      enum pid_type type;
      int i, nr;
      struct pid_namespace *tmp;
      struct upid *upid;
      pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
      if (!pid)
        goto out;
      tmp = ns;
      pid->level = ns->level;
      for (i = ns->level; i >= 0; i--) {
        nr = alloc_pidmap(tmp);
        if (nr < 0)
          goto out_free;
        pid->numbers[i].nr = nr;
        pid->numbers[i].ns = tmp;
        tmp = tmp->parent;
      }
      ...
    }
    
    

    在alloc_pidmap中会判断pid_max,而这个值的定义如下:

    linux: 3.10

    include/linux/threads.h#27

    /*
     * This controls the default maximum pid allocated to a process
     */
    #define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000)
    /*
     * A maximum of 4 million PIDs should be enough for a while.
     * [NOTE: PID/TIDs are limited to 2^29 ~= 500+ million, see futex.h.]
     */
    #define PID_MAX_LIMIT (CONFIG_BASE_SMALL ? PAGE_SIZE * 8 : \
      (sizeof(long) > 4 ? 4 * 1024 * 1024 : PID_MAX_DEFAULT))
    
    

    linux: 3.10

    kernel/pid.c#48

    int pid_max = PID_MAX_DEFAULT;
    #define RESERVED_PIDS    300
    int pid_max_min = RESERVED_PIDS + 1;
    int pid_max_max = PID_MAX_LIMIT;
    
    

    这个值可以通过/proc/sys/kernel/pid_max来查看或者修改。

    小结:

    通过对JVM,glibc,Linux kernel的源码分析,我们暂时得出了一些结论:

    • java thread stack 使用的内存属于系统可用内存不归 jvm heap,no heap 管理。

    • java thread stack size 默认是 1MB,改值也是影响能创建多少线程数的因素之一。

    • linux kernel 层面因素有

    • max_user_processes

    • max_map_count

    • mac_threads

    • pid_max

    2. Java 线程的栈深能有多深

    线程中的 栈结构如下:

    Java 能创建多少线程

    每个栈帧包含:本地变量表,操作数栈,动态链接,返回地址等东西...也就是说栈调用深度越大,栈帧就越多,就越耗内存。

    小结:

    • java threand stack depth 栈帧 没有一个固定的参数设置。由系统内存, stack size 动态限制。
    • java thread stack size 指的是一个线程能用到的最多内存。
    • java thread stack size 越大,拥有的 栈帧就越多,栈深也就越深。
    • 线程中每一个栈帧如本地变量表越小,在固定的 stack size 下,栈帧数量也就越多,栈深也就越深。

    3. 实验

    <colgroup style="box-sizing: border-box;"><col style="box-sizing: border-box;"><col style="box-sizing: border-box;"></colgroup>
    |

    主机配置

    |

    32C 128G

    |
    |

    操作系统

    |

    Linux 4.19

    |
    |

    max_user_process

    |

    506354

    |
    |

    max_threads

    |

    1012708

    |
    |

    pid_max

    |

    4194303

    |
    |

    max_map_count

    |

    262144

    |

    java demo:

    private static Object s = new Object();
        private static int count = 0;
        @RequestMapping(value = "/threads", method = RequestMethod.GET)
        public String threads() {
            log.info("threads");
            for (; ; ) {
                new Thread(new Runnable() {
                    public void run() {
                        synchronized (s) {
                            count += 1;
                            log.info("New thread #" + count);
                        }
                        for (; ; ) {
                            try {
                                Thread.sleep(1000);
                            } catch (Exception e) {
                                System.err.println(e);
                            }
                        }
                    }
                }).start();
            }
        }
    
    

    在该主机上直接运行: 能创建 130,702 个线程。

    2022-03-20 14:19:25.642  INFO 3112536 --- [  Thread-130703] com.example.opsdemo.IndexController      : New thread #130702
    Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::commit_memory(0x00007efcebec6000, 12288, 0) failed; error='Cannot allocate memory' (errno=12)
    #
    # There is insufficient memory for the Java Runtime Environment to continue.
    # Native memory allocation (mmap) failed to map 12288 bytes for committing reserved memory.
    # An error report file with more information is saved as:
    # /tmp/opsdemo/hs_err_pid3112536.log
    2022-03-20 14:19:25.652 ERROR 3112536 --- [nio-8888-exec-1] o.a.c.c.C.[.[.[/].[dispatcherServlet]    : Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Handler dispatch failed; nested exception is java.lang.OutOfMemoryError: unable to create new native thread] with root cause
    java.lang.OutOfMemoryError: unable to create new native thread
    
    

    在该主机上以 pod 的方式部署容器运行,能创建 16,334

    2022-03-20 13:11:34.403  INFO 7 --- [   Thread-16335] com.example.opsdemo.IndexController      : New thread #16334
    2022-03-20 13:11:34.419 ERROR 7 --- [nio-8888-exec-1] o.a.c.c.C.[.[.[/].[dispatcherServlet]    : Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Handler dispatch failed; nested exception is java.lang.OutOfMemoryError: unable to create new native thread] with root cause
    java.lang.OutOfMemoryError: unable to create new native thread
      at java.lang.Thread.start0(Native Method) [na:1.8.0_242]
      at java.lang.Thread.start(Thread.java:744) [na:1.8.0_242]
    
    

    实验小结

    • 在主机上直接运行能看见直接受限于内存能创建 13 W线程。
    • 在 pod 上运行,能创建 1.6W 线程,显然还受限于其它机制,大概率还是 cgroup memory 相关限制。

    </article>

    相关文章

      网友评论

          本文标题:Java 能创建多少线程

          本文链接:https://www.haomeiwen.com/subject/ysicjrtx.html