学习笔记14:模型保存 - pbc的成长之路 - 博客园 (cnblogs.com)
简单模型
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torchvision
import os
import copy
from torchvision import transforms
base_dir = r'./data/4_weather'
train_dir = os.path.join(base_dir,'train')
test_dir = os.path.join(base_dir,'test')
transform = transforms.Compose([
transforms.Resize((96, 96)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
train_ds = torchvision.datasets.ImageFolder(
train_dir,
transform=transform
)
test_ds = torchvision.datasets.ImageFolder(
test_dir,
transform=transform
)
BATCHSIZE = 16
train_dl = torch.utils.data.DataLoader(
train_ds,
batch_size=BATCHSIZE,
shuffle=True
)
test_dl = torch.utils.data.DataLoader(
test_ds,
batch_size=BATCHSIZE,
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 3)
self.conv3 = nn.Conv2d(32, 64, 3)
self.fc1 = nn.Linear(64*10*10, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 4)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 10 * 10)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
if torch.cuda.is_available():
model.to('cuda')
optim = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.CrossEntropyLoss()
def fit(epoch, model, trainloader, testloader):
correct = 0
total = 0
running_loss = 0
model.train()
for x, y in trainloader:
if torch.cuda.is_available():
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
optim.zero_grad()
loss.backward()
optim.step()
with torch.no_grad():
y_pred = torch.argmax(y_pred, dim=1)
correct += (y_pred == y).sum().item()
total += y.size(0)
running_loss += loss.item()
epoch_loss = running_loss / len(trainloader.dataset)
epoch_acc = correct / total
test_correct = 0
test_total = 0
test_running_loss = 0
model.eval()
with torch.no_grad():
for x, y in testloader:
if torch.cuda.is_available():
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
y_pred = torch.argmax(y_pred, dim=1)
test_correct += (y_pred == y).sum().item()
test_total += y.size(0)
test_running_loss += loss.item()
epoch_test_loss = test_running_loss / len(testloader.dataset)
epoch_test_acc = test_correct / test_total
print('epoch: ', epoch,
'loss: ', round(epoch_loss, 3),
'accuracy:', round(epoch_acc, 3),
'test_loss: ', round(epoch_test_loss, 3),
'test_accuracy:', round(epoch_test_acc, 3)
)
return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch,
model,
train_dl,
test_dl)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
epoch: 0 loss: 0.047 accuracy: 0.653 test_loss: 0.037 test_accuracy: 0.804
epoch: 1 loss: 0.028 accuracy: 0.839 test_loss: 0.038 test_accuracy: 0.844
epoch: 2 loss: 0.023 accuracy: 0.856 test_loss: 0.034 test_accuracy: 0.836
epoch: 3 loss: 0.022 accuracy: 0.871 test_loss: 0.034 test_accuracy: 0.796
epoch: 4 loss: 0.018 accuracy: 0.893 test_loss: 0.032 test_accuracy: 0.853
epoch: 5 loss: 0.018 accuracy: 0.9 test_loss: 0.033 test_accuracy: 0.862
epoch: 6 loss: 0.015 accuracy: 0.906 test_loss: 0.034 test_accuracy: 0.88
epoch: 7 loss: 0.012 accuracy: 0.926 test_loss: 0.038 test_accuracy: 0.849
epoch: 8 loss: 0.015 accuracy: 0.918 test_loss: 0.034 test_accuracy: 0.893
epoch: 9 loss: 0.008 accuracy: 0.946 test_loss: 0.043 test_accuracy: 0.867
保存模型
state_dict就是一个简单的Python字典,它将模型中的可训练参数(比如weights和biases,batchnorm的running_mean、torch.optim参数等)通过将模型每层与层的参数张量之间一一映射,实现保存、更新、变化和再存储。
PATH = './my_net.pth'
torch.save(model.state_dict(), PATH)
恢复模型
new_model = Net()
new_model.load_state_dict(torch.load(PATH))
new_model.to(device)
Net(
(conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1))
(conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=6400, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out_features=256, bias=True)
(fc3): Linear(in_features=256, out_features=4, bias=True)
)
test_correct = 0
test_total = 0
new_model.eval()
with torch.no_grad():
for x, y in test_dl:
if torch.cuda.is_available():
x, y = x.to('cuda'), y.to('cuda')
y_pred = new_model(x)
y_pred = torch.argmax(y_pred, dim=1)
test_correct += (y_pred == y).sum().item()
test_total += y.size(0)
epoch_test_acc = test_correct / test_total
print(epoch_test_acc)
训练函数保存最优参数
model = Net()
if torch.cuda.is_available():
model.to('cuda')
optim = torch.optim.Adam(model.parameters(), lr=0.001)
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch,
model,
train_dl,
test_dl)
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
if epoch_test_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
model.load_state_dict(best_model_wts)
model.eval()
完整模型的保存和加载
PATH = './my_whole_model.pth'
torch.save(model, PATH)
new_model2 = torch.load(PATH)
new_model2.eval()
#Net(
# (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1))
# (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
# (conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1))
# (conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
# (fc1): Linear(in_features=6400, out_features=1024, bias=True)
# (fc2): Linear(in_features=1024, out_features=256, bias=True)
# (fc3): Linear(in_features=256, out_features=4, bias=True)
#)
跨设备的模型保存和加载
GPU保存,CPU加载
PATH = './my_gpu_model_wts'
torch.save(model.state_dict(), PATH)
device = torch.device('cpu')
model = Net()
model.load_state_dict(torch.load(PATH, map_location=device))
保存在GPU 上,在 GPU 上加载
PATH = './my_gpu_model2_wts'
torch.save(model.state_dict(), PATH)
device = torch.device("cuda")
model = Net()
model.load_state_dict(torch.load(PATH))
model.to(device)
保存 CPU 上,在 GPU 上加载
PATH = 'my_cpu_wts.pth'
torch.save(model.state_dict(), PATH)
device = torch.device("cuda")
model = Net()
model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want
model.to(device)
网友评论