美文网首页架构算法设计模式和编程理论
数据算法 Hadoop/Spark大数据处理---第一章

数据算法 Hadoop/Spark大数据处理---第一章

作者: _Kantin | 来源:发表于2018-01-03 16:50 被阅读41次

    1.定义输入和输出为:

    • 输入数据格式为:年,月,日,温度。格式为2012,01,01,05
    • 输出数据的格式为:年-月,温度。 格式为:2012-01,3,30 ,35。

    2.使用MapReduce来完成上述二次排序的需求

    - 2.1使用到的类的介绍

    • SecondarySortDrivcer 驱动器类,定义输入输出,并注册插件类
    • SecondarySortMapper 定义map()函数
    • SecondarySortReduce 定义reduce()函数
    • DataTemperatureGroupingComparator 定义如何对键分组
    • DataTemperaturePair 将日期和温度对定义为java对象
    • DataTemperaturePartitioner 定义定制分区器

    - 2.2 关于启动类SecondarySortDriver.java

    //SecondarySortDriver.java
    
    public static int submitJob(String[] args) throws Exception {
            //inputDir和outputDir存入为HDFS路径的话,则会连接到HDFS
            //String[] args = new String[2];
            //args[0] = inputDir;
            //args[1] = outputDir;
            //ToolRunner.run 的方法中实现了tool中的run,上面的对其进行了重写
            int returnStatus = ToolRunner.run(new SecondarySortDriver(), args);
            return returnStatus;
        }
        
    //ToolRunner.run方法,其中tool.run方法是接口Tool的方法
    
     public static int run(Configuration conf, Tool tool, String[] args) throws Exception {
            if(conf == null) {
                conf = new Configuration();
            }
    
            GenericOptionsParser parser = new GenericOptionsParser(conf, args);
            tool.setConf(conf);
            String[] toolArgs = parser.getRemainingArgs();
            return tool.run(toolArgs);
        }
    
    //之后就重写的run方法了
    
         @Override
        public int run(String[] args) throws Exception {
            //定义了一些job的提交方式
            Configuration conf = getConf();
            Job job = new Job(conf);
            job.setJarByClass(SecondarySortDriver.class);
            job.setJobName("SecondarySortDriver");
            
                // args[0] = input directory
                // args[1] = output directory
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            //定义job的提交方式
            job.setOutputKeyClass(DateTemperaturePair.class);
            job.setOutputValueClass(Text.class);
            
            job.setMapperClass(SecondarySortMapper.class);
            job.setReducerClass(SecondarySortReducer.class);        
            job.setPartitionerClass(DateTemperaturePartitioner.class);
            job.setGroupingComparatorClass(DateTemperatureGroupingComparator.class);
    
            boolean status = job.waitForCompletion(true);
            theLogger.info("run(): status="+status);
            return status ? 0 : 1;
        }
    

    - 2.3 关于Map函数类SecondarySortMapper.java

      private final Text theTemperature = new Text();
        //DateTemperaturePair可以理解为DateTemperaturePair,day,temperature的实体类,提供比较方法
        private final DateTemperaturePair pair = new DateTemperaturePair();
    
     
        protected void map(LongWritable key, Text value, Context context) 
            throws IOException, InterruptedException {
            String line = value.toString();
            String[] tokens = line.split(",");
            // YYYY = tokens[0]
            // MM = tokens[1]
            // DD = tokens[2]
            // temperature = tokens[3]
            String yearMonth = tokens[0] + tokens[1];
            String day = tokens[2];
            int temperature = Integer.parseInt(tokens[3]);
    
            pair.setYearMonth(yearMonth);
            pair.setDay(day);
            pair.setTemperature(temperature);
            theTemperature.set(tokens[3]);
    
            context.write(pair, theTemperature);
        }
        
    
    • 其中DateTemperaturePair的比较方法为:
        //如果yearMonth相同的话,才进行排序
        @Override
        public int compareTo(DateTemperaturePair pair) {
            int compareValue = this.yearMonth.compareTo(pair.getYearMonth());
            if (compareValue == 0) {
                compareValue = temperature.compareTo(pair.getTemperature());
            }
            //return compareValue;      // to sort ascending 
            return -1*compareValue;     // to sort descending 
        }
    

    - 2.4 关于Map函数类SecondarySortReducer.java

    //注意传入的参数DateTemperaturePair, Text, Text, Text
    public class SecondarySortReducer 
        extends Reducer<DateTemperaturePair, Text, Text, Text> {
    
        @Override
        protected void reduce(DateTemperaturePair key, Iterable<Text> values, Context context) 
            throws IOException, InterruptedException {
            StringBuilder builder = new StringBuilder();
            for (Text value : values) {
                builder.append(value.toString());
                builder.append(",");
            }
            context.write(key.getYearMonth(), new Text(builder.toString()));
        }
    }
    
    
    

    - 2.5 关于运行函数的脚本

    #cat run.sh
    
    export JAVA_HOME=/usr/java/jdk8
    export BOOK_HOME=/home/mp/data-algorithms-book
    export APP_JAR=$BOOK_HOME/dist/data_algorithms_book.jar
    INPUT=/secondary_sort/input
    OUTPUT=/secondary_sort/output
    $HADOOP_HOME/bin/hadoop -fs -rmr $OUTPUT
    PROG = org.dataalgorithms.chap01.mapreduce.SecondarySortDriver
    $HADOOP_HOME/bin/hadoop jar $APP_JAR $PROG $INPUT $OUTPUT
    

    3.使用spark来完成上述二次排序的需求

    - 3.1 需求的定义

     * Input:
     *
     *    name, time, value  
     *    x,2,9
     *    y,2,5
     *    x,1,3
     *    y,1,7
     *    y,3,1
     *    x,3,6
     *    z,1,4
     *    z,2,8
     *    z,3,7
     *    z,4,0
     *
     *Output: generate a time-series looking like this:
     *  x => [(1,3), (2,9), (3,6)]
     *  y => [(1,7), (2,5), (3,1)]
     *  z => [(1,4), (2,8), (3,7), (4,0)]
    

    - 3.2 SecondarySort类总结构

    public class SecondarySort{
         public static void main(String[] args) throws Exception {
            //步骤2:读取输入参数并验证
            //步骤3:创建一个javasparkcontext对象(ctx)
            //步骤4:使用ctx创建JavaRDD<String>
            //步骤5:JavaRDD<String>创建键值对,其中键是{name},值是{time,value}对
            //步骤6:验证步骤5,打印出来
            //步骤7:按键{name}对JavaRDD<String>元素分组
            //步骤8:验证步骤7,
            //步骤9:对归约器值排序,将得到最终输出
            //步骤10:验证步骤9,
          
            ctx.close();
            System.exit(0);
             
         }
    }
    
    
    - 3.2.1 步骤2:读取输入参数
    if (args.length < 2) {
            System.err.println("Usage: SecondarySortUsingGroupByKey <input> <output>");
            System.exit(1);
        }
        String inputPath = args[0];
        System.out.println("inputPath=" + inputPath);
        String outputPath = args[1];
        System.out.println("outputPath=" + outputPath);
    
    
    - 3.2.2 步骤3:连接到sparkMaster
    // STEP-2: Connect to the Spark master by creating JavaSparkContext object
        final JavaSparkContext ctx = SparkUtil.createJavaSparkContext("SecondarySorting");
    
    
    - 3.2.3 步骤4:创建javaRDD
    //  input record format: <name><,><time><,><value>
        JavaRDD<String> lines = ctx.textFile(inputPath, 1);
    
    - 3.2.4 步骤5:从avaRDD中创建键值读,从 <name><,><time><,><value>转换成一个<name,Tuple(time,value)组合>
    JavaPairRDD<String, Tuple2<Integer, Integer>> pairs = lines.mapToPair(new PairFunction<String, String, Tuple2<Integer, Integer>>() {
          @Override
          //重写PairFunction中的  Tuple2<K, V> call(T t)方法,此处s 为 T
          public Tuple2<String, Tuple2<Integer, Integer>> call(String s) {
            String[] tokens = s.split(","); // x,2,5
            System.out.println(tokens[0] + "," + tokens[1] + "," + tokens[2]);
            Tuple2<Integer, Integer> timevalue = new Tuple2<Integer, Integer>(Integer.parseInt(tokens[1]), Integer.parseInt(tokens[2]));
            //转换为对应的返回值
            return new Tuple2<String, Tuple2<Integer, Integer>>(tokens[0], timevalue);
          }
        });
    
    
    - 3.2.5 步骤6:验证步骤五的输出结果
     /**
           *  OUTPUT:
           *  X,2,9
           *  Y,2,5
           *  X,1,3
           *  ……
           */
           
     List<Tuple2<String, Tuple2<Integer, Integer>>> output = pairs.collect();
        for (Tuple2 t : output) {
           Tuple2<Integer, Integer> timevalue = (Tuple2<Integer, Integer>) t._2;
           System.out.println(t._1 + "," + timevalue._1 + "," + timevalue._2);
        }
    
    
    - 3.2.6 步骤7:通过groupByKey对key进行分组
      // STEP-6: We group JavaPairRDD<> elements by the key ({name}). 
        JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>> groups = pairs.groupByKey();
    
    
    - 3.2.7 步骤8:验证步骤七的输入结果
     /**
           *  OUTPUT:
           *  Y
           *  2,5
           *  1,7
           *  3.1    
           *  ……
           */
    
    List<Tuple2<String, Iterable<Tuple2<Integer, Integer>>>> output2 = groups.collect();
        for (Tuple2<String, Iterable<Tuple2<Integer, Integer>>> t : output2) {
           Iterable<Tuple2<Integer, Integer>> list = t._2;
           //输入key
           System.out.println(t._1);
           for (Tuple2<Integer, Integer> t2 : list) {
              //输入value Tuple中的值
              System.out.println(t2._1 + "," + t2._2);
           }
           System.out.println("=====");
        }
    
    
    - 3.2.8 步骤9:用mapValues对value的第一位进行排序
     //mapValues方法可以对value进行排序,但是不影响key的顺序
        JavaPairRDD<String, Iterable<Tuple2<Integer, Integer>>> sorted = groups.mapValues(new Function<Iterable<Tuple2<Integer, Integer>>,      // input
                                                                                                       Iterable<Tuple2<Integer, Integer>>       // output
                                                                                                      >() {  
          @Override
          public Iterable<Tuple2<Integer, Integer>> call(Iterable<Tuple2<Integer, Integer>> s) {
            List<Tuple2<Integer, Integer>> newList = new ArrayList<Tuple2<Integer, Integer>>(iterableToList(s));
            //SparkTupleComparator中继承了Comparator并重写了它的sort方法
            Collections.sort(newList, SparkTupleComparator.INSTANCE);
            return newList;
          }
        });
    
    
    - 3.2.9 步骤10:构造结果的打印规则并保持到HDFS
     /**
           *  OUTPUT:
           *  (z,[(1,4),(2,8),(3,7)])
           *  ……
           */
    
     List<Tuple2<String, Iterable<Tuple2<Integer, Integer>>>> output3 = sorted.collect();
        for (Tuple2<String, Iterable<Tuple2<Integer, Integer>>> t : output3) {
           Iterable<Tuple2<Integer, Integer>> list = t._2;
           System.out.println(t._1);
           for (Tuple2<Integer, Integer> t2 : list) {
              System.out.println(t2._1 + "," + t2._2);
           }
           System.out.println("=====");
        }
    
        sorted.saveAsTextFile(outputPath);
    
        System.exit(0);
      }
    
    

    4.使用scala完成需求

     def main(args: Array[String]): Unit = {
        //
        if (args.length != 3) {
          println("Usage <number-of-partitions> <input-path> <output-path>")
          sys.exit(1)
        }
    
    //    val partitions = args(0).toInt
    //    val inputPath = args(1)
    //    val outputPath = args(2)
    
        val partitions = 3
        val inputPath = "C:\\Users\\Administrator\\Desktop\\Book Code\\input.txt"
        val outputPath = " C:\\Users\\Administrator\\Desktop\\Book Code\\output.txt"
    
        val config = new SparkConf
        config.setAppName("SecondarySort")
        val sc = new SparkContext(config)
    
        val input = sc.textFile(inputPath)
    
        //------------------------------------------------
        // each input line/record has the following format:
        // <id><,><time><,><value>
        //-------------------------------------------------
        val valueToKey = input.map(x => {
          val line = x.split(",")
          //返回(<year-day,temperature>,temperature)
          ((line(0) + "-" + line(1), line(2).toInt), line(2).toInt)
        })    
        //隐式转换比较的规则
        implicit def tupleOrderingDesc = new Ordering[Tuple2[String, Int]] {
          override def compare(x: Tuple2[String, Int], y: Tuple2[String, Int]): Int = {
            if (y._1.compare(x._1) == 0) y._2.compare(x._2)
            else y._1.compare(x._1)
          }
        }
        //排序之后的列表
        val sorted = valueToKey.repartitionAndSortWithinPartitions(new CustomPartitioner(partitions))
        //进行结果的转换
        val result = sorted.map {
          case (k, v) => (k._1, v)
        }
        //保持到文件
        result.saveAsTextFile(outputPath)
    
        // done
        sc.stop()
      }
    
    

    相关文章

      网友评论

        本文标题:数据算法 Hadoop/Spark大数据处理---第一章

        本文链接:https://www.haomeiwen.com/subject/ywtknxtx.html