二叉树的常用算法

作者: 紫霞等了至尊宝五百年 | 来源:发表于2018-03-10 18:59 被阅读440次
    节点访问的次序,忽略打印行为

    如果将打印安排在同个数字第一次被访问时,即先序遍历
    第二次即中序遍历
    第三次即后序遍历
    现二叉树的先序、中序、后序遍历,包括递归方式和非递归
    方式
    二叉树结构定义

    public static class Node {
            public int value;
            public Node left;
            public Node right;
    
            public Node(int data) {
                this.value = data;
            }
        }
    

    递归

    先序遍历

       /**
         * 先序遍历
         *
         * @param head
         */
        public static void preOrderRecur(Node head) {
            if (head == null) {
                return;
            }
            System.out.print(head.value + " ");
            preOrderRecur(head.left);
            preOrderRecur(head.right);
        }
    

    中序遍历

       /**
         * 中序遍历
         *
         * @param head
         */
        public static void inOrderRecur(Node head) {
            if (head == null) {
                return;
            }
            inOrderRecur(head.left);
            System.out.print(head.value + " ");
            in
    

    后序遍历

       /**
         * 后序遍历
         *
         * @param head
         */
        public static void posOrderRecur(Node head) {
            if (head == null) {
                return;
            }
            posOrderRecur(head.left);
            posOrderRecur(head.right);
            System.out.print(head.value + " ");
        }
    
    

    2 非递归

    2.1 先序遍历非递归

    public static void preOrderUnRecur(Node head) {
            System.out.print("pre-order: ");
            if (head != null) {
                //构造栈
                Stack<Node> stack =new Stack<>();
                //压栈以当前结点为头,变成先序的逆序
                stack.add(head);
                while (!stack.isEmpty()) {
                    //弹栈
                    head = stack.pop();
                    System.out.print(head.value + " ");
                    /**
                     * 有右孩子就先压,否则压左
                     */
                    //右孩子非空时
                    if (head.right != null) {
                        //压栈右孩子
                        stack.push(head.right);
                    }
                    //左孩子非空时
                    if (head.left != null) {
                        //压栈左孩子
                        stack.push(head.left);
                    }
                }
            }
            System.out.println();
        }
    

    2.2 中序遍历非递归

       /**
         * 中序遍历的非递归版本
         *
         * @param head
         */
        public static void inOrderUnRecur(Node head) {
            System.out.print("in-order: ");
            if (head != null) {
                //构造栈
                Stack<Node> stack =new Stack<>();
                //当前结点为空,从栈弹一个打印,当前结点向右跑
                // 非空,则压栈,向左跑
                while (!stack.isEmpty() || head != null) {
                    //会把当前结点的左孩子全都压栈!
                    if (head != null) {
                        stack.push(head);
                        head = head.left;
                    } else {
                        head = stack.pop();
                        System.out.print(head.value + " ");
                        head = head.right;
                    }
                }
            }
            System.out.println();
        }
    
    整棵树都被左边界分解,然后栈的逆序打印即可

    再怎么解释都需要自己的代码理解!!!中序遍历非递归也是最难理解的!

    2.3 后序遍历非递归

    即要实现左右中,逆序中左右其实根据先序遍历非递归改变左右压栈顺序即可,然后该打印时不打印,而是放在辅助栈中,就成了左右中顺序,打印之!

       /**
         * 后序遍历的非递归版本1
         *
         * @param head
         */
        public static void posOrderUnRecur1(Node head) {
            System.out.print("pos-order: ");
            if (head != null) {
                Stack<Node> s1 =new Stack<>();
                //辅助栈
                Stack<Node> s2 =new Stack<>();
                s1.push(head);
                while (!s1.isEmpty()) {
                    head = s1.pop();
                    //打印时,不让其打印,而是放在辅助栈
                    s2.push(head);
                    //先压左
                    if (head.left != null) {
                        s1.push(head.left);
                    }
                    //再压右
                    if (head.right != null) {
                        s1.push(head.right);
                    }
                }
                while (!s2.isEmpty()) {
                    //最后打印辅助栈即可!
                    System.out.print(s2.pop().value + " ");
                }
            }
            System.out.println();
        }
    
       /**
         * 后序遍历的非递归版本2
         * 
         * @param h
         */
        public static void posOrderUnRecur2(Node h) {
            System.out.print("pos-order: ");
            if (h != null) {
                Stack<Node> stack =new Stack<>();
                stack.push(h);
                Node c = null;
                while (!stack.isEmpty()) {
                    c = stack.peek();
                    if (c.left != null && h != c.left && h != c.right) {
                        stack.push(c.left);
                    } else if (c.right != null && h != c.right) {
                        stack.push(c.right);
                    } else {
                        System.out.print(stack.pop().value + " ");
                        h = c;
                    }
                }
            }
            System.out.println();
        }
    

    3 小结

    无论递归非递归,本质都是使用了栈ADT,由于二叉树本身只有向下的路径,所以需要有支持回去的路径,栈即为天之骄子!!!二叉树整体是向下的,当遍历到某一结点时需要回去时,就是刚刚好逆序的栈ADT!

    福利函数,打印正确的二叉树,用于验证

    /**
     * @author Shusheng Shi
     */
    public class PrintBinaryTree {
    
        public static class Node {
            public int value;
            public Node left;
            public Node right;
    
            public Node(int data) {
                this.value = data;
            }
        }
    
        public static void printTree(Node head) {
            System.out.println("Binary Tree:");
            printInOrder(head, 0, "H", 17);
            System.out.println();
        }
    
        public static void printInOrder(Node head, int height, String to, int len) {
            if (head == null) {
                return;
            }
            printInOrder(head.right, height + 1, "v", len);
            String val = to + head.value + to;
            int lenM = val.length();
            int lenL = (len - lenM) / 2;
            int lenR = len - lenM - lenL;
            val = getSpace(lenL) + val + getSpace(lenR);
            System.out.println(getSpace(height * len) + val);
            printInOrder(head.left, height + 1, "^", len);
        }
    
        public static String getSpace(int num) {
            String space = " ";
            StringBuffer buf = new StringBuffer("");
            for (int i = 0; i < num; i++) {
                buf.append(space);
            }
            return buf.toString();
        }
    
        public static void main(String[] args) {
            Node head = new Node(1);
            head.left = new Node(-222222222);
            head.right = new Node(3);
            head.left.left = new Node(Integer.MIN_VALUE);
            head.right.left = new Node(55555555);
            head.right.right = new Node(66);
            head.left.left.right = new Node(777);
            printTree(head);
    
            head = new Node(1);
            head.left = new Node(2);
            head.right = new Node(3);
            head.left.left = new Node(4);
            head.right.left = new Node(5);
            head.right.right = new Node(6);
            head.left.left.right = new Node(7);
            printTree(head);
    
            head = new Node(1);
            head.left = new Node(1);
            head.right = new Node(1);
            head.left.left = new Node(1);
            head.right.left = new Node(1);
            head.right.right = new Node(1);
            head.left.left.right = new Node(1);
            printTree(head);
    
        }
    
    }
    
    

    4 实战coding

    在二叉树中找到一个节点的后继节点

    现在有一种新的二叉树节点类型如下:

    public class Node { 
         public int value; 
         public Node left;
         public Node right; 
         //可找到父结点,头结点指空
         public Node parent;
         public Node(int data) { 
              this.value = data; 
         }
    }
    

    该结构比普通二叉树节点结构多了一个指向父节点的parent指针。
    假设有一 棵Node类型的节点组成的二叉树,树中每个节点的parent指针都正确地指向 自己的父节点,头节点的parent指向null。
    只给一个在二叉树中的某个节点 node,请实现返回node的后继节点的函数。
    在二叉树的中序遍历的序列中, node的下一个节点叫作node的后继节点


    后继结点示例

    前驱结点同理!不赘述

    /**
     * @author Shusheng Shi
     */
    public class SuccessorNode {
    
        public static class Node {
            public int value;
            public Node left;
            public Node right;
            public Node parent;
    
            public Node(int data) {
                this.value = data;
            }
        }
    
        /**
         * 如果是父节点的左孩子,就直接打印父节点
         * 否则找父节点的父节点,看父节点是否为其父的左孩子
         * 一路上行
         * @param node
         * @return
         */
        public static Node getSuccessorNode(Node node) {
            if (node == null) {
                return node;
            }
            //当前节点右孩子非空,说明有右子树
            if (node.right != null) {
                //直接找右子树的最左结点
                return getLeftMost(node.right);
                //当前节点右孩子为空
            } else {
                //取得其父结点
                Node parent = node.parent;
                //当前结点为其父左孩子时退出循环,可以简单认为整棵树为空节点的左孩子
                while (parent != null && parent.left != node) {
                    //否则两指针同时一路上行
                    node = parent;
                    parent = node.parent;
                }
                return parent;
            }
        }
    
        /**
         * 给定结点子树的最左结点
         *
         * @param node 某棵子树的头部
         * @return
         */
        public static Node getLeftMost(Node node) {
            if (node == null) {
                return node;
            }
            while (node.left != null) {
                //一路左行即可
                node = node.left;
            }
            return node;
        }
    
        public static void main(String[] args) {
            Node head = new Node(6);
            head.parent = null;
            head.left = new Node(3);
            head.left.parent = head;
            head.left.left = new Node(1);
            head.left.left.parent = head.left;
            head.left.left.right = new Node(2);
            head.left.left.right.parent = head.left.left;
            head.left.right = new Node(4);
            head.left.right.parent = head.left;
            head.left.right.right = new Node(5);
            head.left.right.right.parent = head.left.right;
            head.right = new Node(9);
            head.right.parent = head;
            head.right.left = new Node(8);
            head.right.left.parent = head.right;
            head.right.left.left = new Node(7);
            head.right.left.left.parent = head.right.left;
            head.right.right = new Node(10);
            head.right.right.parent = head.right;
    
            Node test = head.left.left;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.left.left.right;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.left;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.left.right;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.left.right.right;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.right.left.left;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.right.left;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.right;
            System.out.println(test.value + " next: " + getSuccessorNode(test).value);
            test = head.right.right; // 10's next is null
            System.out.println(test.value + " next: " + getSuccessorNode(test));
        }
    
    }
    
    

    5序列化和反序列化

    怎么序列化的就怎么反序列化


    按层序列化示意
    import java.util.LinkedList;
    import java.util.Queue;
    
    /**
     * @author Shusheng Shi
     */
    public class SerializeAndReconstructTree {
    
        public static class Node {
            public int value;
            public Node left;
            public Node right;
    
            public Node(int data) {
                this.value = data;
            }
        }
    
        public static String serialByPre(Node head) {
            if (head == null) {
                return "#!";
            }
            String res = head.value + "!";
            res += serialByPre(head.left);
            res += serialByPre(head.right);
            return res;
        }
    
        public static Node reconByPreString(String preStr) {
            String[] values = preStr.split("!");
            //加入队列,方便依次出队
            Queue<String> queue =new LinkedList<>();
            for (int i = 0; i != values.length; i++) {
                queue.offer(values[i]);
            }
            return reconPreOrder(queue);
        }
    
        /**
         * 用给定队列建树
         *
         * @param queue
         * @return
         */
        public static Node reconPreOrder(Queue<String> queue) {
            //出队一个
            String value = queue.poll();
            //空树
            if (value.equals("#")) {
                return null;
            }
            //非空时建立一个头结点,中-左-右顺序
            Node head = new Node(Integer.valueOf(value));
            //左子树递归
            head.left = reconPreOrder(queue);
            //右子树递归
            head.right = reconPreOrder(queue);
            return head;
        }
    
        /**
         * 按层序列化
         * 
         * @param head
         * @return
         */
        public static String serialByLevel(Node head) {
            if (head == null) {
                return "#!";
            }
            String res = head.value + "!";
            Queue<Node> queue = new LinkedList<Node>();
            queue.offer(head);
            while (!queue.isEmpty()) {
                head = queue.poll();
                if (head.left != null) {
                    res += head.left.value + "!";
                    queue.offer(head.left);
                } else {
                    res += "#!";
                }
                if (head.right != null) {
                    res += head.right.value + "!";
                    queue.offer(head.right);
                } else {
                    res += "#!";
                }
            }
            return res;
        }
    
        public static Node reconByLevelString(String levelStr) {
            String[] values = levelStr.split("!");
            int index = 0;
            Node head = generateNodeByString(values[index++]);
            Queue<Node> queue = new LinkedList<Node>();
            if (head != null) {
                queue.offer(head);
            }
            Node node = null;
            while (!queue.isEmpty()) {
                node = queue.poll();
                node.left = generateNodeByString(values[index++]);
                node.right = generateNodeByString(values[index++]);
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
            return head;
        }
    
        public static Node generateNodeByString(String val) {
            if (val.equals("#")) {
                return null;
            }
            return new Node(Integer.valueOf(val));
        }
    
        public static void printTree(Node head) {
            System.out.println("Binary Tree:");
            printInOrder(head, 0, "H", 17);
            System.out.println();
        }
    
        public static void printInOrder(Node head, int height, String to, int len) {
            if (head == null) {
                return;
            }
            printInOrder(head.right, height + 1, "v", len);
            String val = to + head.value + to;
            int lenM = val.length();
            int lenL = (len - lenM) / 2;
            int lenR = len - lenM - lenL;
            val = getSpace(lenL) + val + getSpace(lenR);
            System.out.println(getSpace(height * len) + val);
            printInOrder(head.left, height + 1, "^", len);
        }
    
        public static String getSpace(int num) {
            String space = " ";
            StringBuffer buf = new StringBuffer("");
            for (int i = 0; i < num; i++) {
                buf.append(space);
            }
            return buf.toString();
        }
    
        public static void main(String[] args) {
            Node head = null;
            printTree(head);
    
            String pre = serialByPre(head);
            System.out.println("serialize tree by pre-order: " + pre);
            head = reconByPreString(pre);
            System.out.print("reconstruct tree by pre-order, ");
            printTree(head);
    
            String level = serialByLevel(head);
            System.out.println("serialize tree by level: " + level);
            head = reconByLevelString(level);
            System.out.print("reconstruct tree by level, ");
            printTree(head);
    
            System.out.println("====================================");
    
            head = new Node(1);
            printTree(head);
    
            pre = serialByPre(head);
            System.out.println("serialize tree by pre-order: " + pre);
            head = reconByPreString(pre);
            System.out.print("reconstruct tree by pre-order, ");
            printTree(head);
    
            level = serialByLevel(head);
            System.out.println("serialize tree by level: " + level);
            head = reconByLevelString(level);
            System.out.print("reconstruct tree by level, ");
            printTree(head);
    
            System.out.println("====================================");
    
            head = new Node(1);
            head.left = new Node(2);
            head.right = new Node(3);
            head.left.left = new Node(4);
            head.right.right = new Node(5);
            printTree(head);
    
            pre = serialByPre(head);
            System.out.println("serialize tree by pre-order: " + pre);
            head = reconByPreString(pre);
            System.out.print("reconstruct tree by pre-order, ");
            printTree(head);
    
            level = serialByLevel(head);
            System.out.println("serialize tree by level: " + level);
            head = reconByLevelString(level);
            System.out.print("reconstruct tree by level, ");
            printTree(head);
    
            System.out.println("====================================");
    
            head = new Node(100);
            head.left = new Node(21);
            head.left.left = new Node(37);
            head.right = new Node(-42);
            head.right.left = new Node(0);
            head.right.right = new Node(666);
            printTree(head);
    
            pre = serialByPre(head);
            System.out.println("serialize tree by pre-order: " + pre);
            head = reconByPreString(pre);
            System.out.print("reconstruct tree by pre-order, ");
            printTree(head);
    
            level = serialByLevel(head);
            System.out.println("serialize tree by level: " + level);
            head = reconByLevelString(level);
            System.out.print("reconstruct tree by level, ");
            printTree(head);
    
            System.out.println("====================================");
    
        }
    }
    

    判断一棵二叉树是否是平衡二叉树

    平衡二叉树(Self-balancing binary search tree)
    又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,同时,平衡二叉树必定是二叉搜索树,反之则不一定。平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。

    解题思路

    以每个结点为头的整棵树都要是平衡的
    左子树平衡?
    右子树平衡?
    都平衡情况下,左子树高度?
    右子树高度?
    判断差值

    package com.sss.class04;
    
    /**
     * @author Shusheng Shi
     */
    public class IsBalancedTree {
    
        public static class Node {
            public int value;
            public Node left;
            public Node right;
    
            public Node(int data) {
                this.value = data;
            }
        }
    
        public static boolean isBalance(Node head) {
            boolean[] res = new boolean[1];
            res[0] = true;
            getHeight(head, 1, res);
            return res[0];
        }
    
        public static int getHeight(Node head, int level, boolean[] res) {
            if (head == null) {
                return level;
            }
            int lH = getHeight(head.left, level + 1, res);
            if (!res[0]) {
                return level;
            }
            int rH = getHeight(head.right, level + 1, res);
            if (!res[0]) {
                return level;
            }
            if (Math.abs(lH - rH) > 1) {
                res[0] = false;
            }
            return Math.max(lH, rH);
        }
    
        public static void main(String[] args) {
            Node head = new Node(1);
            head.left = new Node(2);
            head.right = new Node(3);
            head.left.left = new Node(4);
            head.left.right = new Node(5);
            head.right.left = new Node(6);
            head.right.right = new Node(7);
    
            System.out.println(isBalance(head));
    
        }
    
    }
    
    

    判断一棵树是否是搜索二叉树、判断一棵树是否是完全二叉树

    • 搜索二叉树(Binary Search Tree)(又:二叉搜索树,二叉排序树)
      它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树
    • 完全二叉树(Complete Binary Tree)
      若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
    /**
         * 是否为完全二叉树
         *
         * @param head
         * @return
         */
        public static boolean isCBT(Node head) {
            if (head == null) {
                return true;
            }
            Queue<Node> queue =new LinkedList<>();
            boolean leaf = false;
            Node left,right;
            //开始时,将头加入队列
            queue.offer(head);
            while (!queue.isEmpty()) {
                //然后在队列中出队当前节点
                head = queue.poll();
                //拿到左右孩子
                left = head.left;
                right = head.right;
                //开启了叶节点的阶段 且 左/右孩子非空
                if ((leaf && (left != null || right != null)) || (left == null && right != null)) {
                    return false;
                }
                if (left != null) {
                    queue.offer(left);
                }
                if (right != null) {
                    queue.offer(right);
                } else {
                    leaf = true;
                }
            }
            return true;
        }
    

    二叉树层序遍历

    相关文章

      网友评论

      本文标题:二叉树的常用算法

      本文链接:https://www.haomeiwen.com/subject/zbsbfftx.html