美文网首页奥数自学研究
高中奥数 2022-03-01

高中奥数 2022-03-01

作者: 天目春辉 | 来源:发表于2022-03-01 08:43 被阅读0次

    H"older不等式:w_{1},w_{2},\cdots ,w_{n}是正实数,w_{1}+w_{2}+\cdots +w_{n}=1,对任意正实数a_{ij},有
    \begin{aligned} &\left(a_{11}+a_{12}+\cdots+a_{1m}\right)^{w_{1}}\left(a_{21}+a_{22}+\cdots +a_{2m}\right)^{w_{2}}\cdots \left(a_{n1}+a_{n2}+\cdots +a_{mn}\right)^{w_{n}}\\ \geqslant &a_{11}^{w_{1}}a_{21}^{w_{2}}\cdots a_{n1}^{w_{n}}+a_{12}^{w_{1}}a_{22}^{w_{2}}\cdots a_{n2}^{w_{n}}+\cdots+a_{1m}^{w_{1}}a_{2m}^{w_{2}}\cdots a_{nm}^{w_{n}} \end{aligned}.\qquad(*)
    (即:\prod\limits_{i=1}^{n}\left(\sum\limits_{j=1}^{m}a_{ij}\right)^{w_{i}}\geqslant \sum\limits_{j=1}^{m}\prod\limits_{i=1}^{n}a_{ij}^{w_{i}}.)

    证明

    A_{\alpha}=\sum\limits_{j=1}^{m}a_{\alpha j}\left(\alpha=1,2,\cdots,n\right),则(*)式为
    \left(A_{1}^{w_{1}}A_{2}^{w_{2}}\cdots A_{n}^{w_{n}}\right)^{-1}\sum\limits_{j=1}^{m}a_{1j}^{w_{1}}a_{2j}^{w_{2}}\cdots a_{nj}^{w_{n}}\leqslant 1,
    \sum\limits_{j=1}^{m}\left(\dfrac{a_{1j}}{A_{1}}\right)^{w_{1}}\left(\dfrac{a_{2j}}{A_{2}}\right)^{w_{2}}\cdots \left(\dfrac{a_{nj}}{A_{n}}\right)^{w_{n}}\leqslant 1.

    因为f\left(x\right)=\ln x\left(x>0\right))是向上凸函数(因为f^{\prime\prime}\left(x\right)=-\dfrac{1}{x^{2}}<0),由加权的Jensen不等式,可得
    \begin{aligned} & w_{1} \ln \dfrac{a_{1 j}}{A_{1}}+w_{2} \ln \dfrac{a_{2 j}}{A_{2}}+\cdots +w_{n} \ln \dfrac{a_{n j}}{A_{n}} \\ =& \dfrac{1}{w_{1}+w_{2}+\cdots+w_{n}}\left(w_{1} \ln \dfrac{a_{1 j}}{A_{1}}+w_{2} \ln \dfrac{a_{2 j}}{A_{2}}+\cdots +w_{n} \ln \dfrac{a_{n j}}{A_{n}}\right) \\ \leqslant & \ln \dfrac{w_{1} \dfrac{a_{1 j}}{A_{1}}+w_{2} \dfrac{a_{2 j}}{A_{2}}+\cdots+w_{n} \dfrac{a_{n j}}{A_{n}}}{w_{1}+w_{2}+\cdots+w_{n}} \\ \leqslant & \ln \left(w_{1} \dfrac{a_{1 j}}{A_{1}}+w_{2} \dfrac{a_{2 j}}{A_{2}}+\cdots+w_{n} \dfrac{a_{n j}}{A_{n}}\right). \end{aligned}
    所以\left(\dfrac{a_{1 j}}{A_{1}}\right)^{w_{1}}\left(\dfrac{a_{2 j}}{A_{2}}\right)^{w_{2}} \cdots\left(\dfrac{a_{n j}}{A_{n}}\right)^{w_{n}} \leqslant w_{1} \dfrac{a_{1 j}}{A_{1}}+w_{2} \dfrac{a_{2 j}}{A_{2}}+\cdots+w_{n} \dfrac{a_{n j}}{A_{n}},

    把上式对j从1到m求和,得
    \sum\limits_{j=1}^{m}\left(\dfrac{a_{1 j}}{A_{1}}\right)^{w_{1}}\left(\dfrac{a_{2 j}}{A_{2}}\right)^{w_{2}} \cdots\left(\dfrac{a_{n j}}{A_{n}}\right)^{w_{n}} \leqslant w_{1}+w_{2}+\cdots+w_{n}=1,
    从而命题得证.

    特别地w_{1}=w_{2}=\cdots =w_{n}=\dfrac{1}{n},当时,有
    \begin{aligned} &\left(a_{11}^{n}+a_{12}^{n}+\cdots+a_{1 m}^{n}\right)\left(a_{21}^{n}+a_{22}^{n}+\cdots+a_{2 m}^{n}\right) \cdots\left(a_{n 1}^{n}+a_{n 2}^{n}+\cdots+a_{n m}^{n}\right) \\ \geqslant &\left(a_{11} a_{21} \cdots a_{n 1}+a_{12} a_{22} \cdots a_{n 2}+\cdots+a_{1 m} a_{2 m} \cdots a_{m n}\right)^{n}.\\qquad(**) \end{aligned}
    (**)中,取n=3,m=3,有
    \begin{aligned} &\left(a_{11}^{3}+a_{12}^{3}+a_{13}^{3}\right)\left(a_{21}^{3}+a_{22}^{3}+a_{23}^{3}\right)\left(a_{31}^{3}+a_{32}^{3}+a_{33}^{3}\right) \\ \geqslant &\left(a_{11} a_{21} a_{31}+a_{12} a_{22} a_{32}+a_{13} a_{23} a_{33}\right)^{3} .\qquad(***) \end{aligned}
    (**)中,取n=3,m=2,有
    \left(a_{11}^{3}+a_{12}^{3}\right)\left(a_{21}^{3}+a_{22}^{3}\right)\left(a_{31}^{3}+a_{32}^{3}\right) \geqslant\left(a_{11} a_{21} a_{31}+a_{12} a_{22} a_{32}\right)^{3} .\qquad(****)
    (*)中,取n=2,有
    \left(\sum\limits_{i=1}^{m} a_{i}\right)^{\alpha}\left(\sum\limits_{i=1}^{m} b_{i}\right)^{\beta} \geqslant \sum\limits_{i=1}^{m} a_{i}^{\alpha} b_{i}^{\beta}.\qquad(*****)
    其中alpha\beta是正实数,且\alpha+\beta=1.当\alpha=\beta\dfrac{1}{2}时,(*****)即为Cauchy不等式.

    (*****)中,令m=n,a_{i}^{\alpha}=x_{i},b_{i}^{\beta}=y_{i},\alpha=\dfrac{1}{p},\beta=\dfrac{1}{q},则(*****)式为
    \sum\limits_{i=1}^{n} x_{i} y_{i} \leqslant \left(\sum\limits_{i=1}^{n} x_{i}^{p}\right)^{\dfrac{1}{p}} \left(\sum\limits_{i=1}^{n} y_{i}^{q}\right)^{\dfrac{1}{q}},\qquad(******)
    其中p>0,q>0,\dfrac{1}{p}+\dfrac{1}{q}=1.

    2022-03-01-01

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P023 例28)

    a,b\in \mathbb{R}^{+}.

    (1)求S=\dfrac{\left(a+1\right)^{2}}{b}+\dfrac{\left(b+3\right)^{2}}{a}的最小值;

    (2)求T=\dfrac{\left(a+1\right)^{3}}{b^{2}}+\dfrac{\left(b+3\right)^{3}}{a^{2}}的最的最小值.

    (1)由柯西不等式,得
    S\cdot \left(b+a\right)\geqslant \left(a+1+b+3\right)^{2},
    所以
    \begin{aligned} S&\geqslant \dfrac{\left(a+b+4\right)^{2}}{a+b}\\ &=\left(a+b\right) +\dfrac{16}{a+b}+8\\ &\geqslant 2\sqrt{16}+8\\ &=16, \end{aligned}
    a= \dfrac{7}{3},b=\dfrac{5}{3}时等号成立.

    S的最小值为16.

    (2)由(H"older不等式),有
    \left(\dfrac{\left(a+1\right)^{3}}{b^{2}}+\dfrac{\left(b+3\right)^{3}}{a^{2}}\right)\left(b+a\right)\left(b+a\right)\geqslant\left(a+1+b+3\right)^{3},
    所以
    \begin{aligned} T & \geqslant \dfrac{(a+b+4)^{3}}{(a+b)^{2}}=x+12+\dfrac{48}{x}+\dfrac{64}{x^{2}}(\text { 记 } a+b=x) \\ &=x+\dfrac{64}{x}+\left(\dfrac{64}{x^{2}}-\dfrac{16}{x}+1\right)+11 \\ &=\left(x+\dfrac{64}{x}\right)+\left(\dfrac{8}{x}-1\right)^{2}+11 \geqslant 2 \sqrt{64}+0+11 \\ &=27 . \end{aligned}
    a = \dfrac{22} {5},b=\dfrac{18}{5}时等号成立.

    所以T的最小值为27.

    2022-03-01-02

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P024 例29)

    a,b,c\in \mathbb{R}^{+},求证:
    \dfrac{a+b+c}{3}\geqslant \sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}} \geqslant \dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{3}.
    证明

    由平均不等式,得
    \dfrac{a+b|+\left(b+c\right)+ \left(c+a\right)}{3}\geqslant \sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)},
    所以
    \dfrac{a+b+c}{3}\geqslant \sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.

    由(H"older不等式),有
    \begin{aligned} \dfrac{(a+b)(b+c)(c+a)}{8} &=\dfrac{1}{27}\left(\dfrac{a+b}{2}+b+a\right)\left(b+\dfrac{b+c}{2}+c\right)\left(a+c+\dfrac{a+c}{2}\right) \\ & \geqslant \dfrac{1}{27}\left(\sqrt[3]{\dfrac{a+b}{2} \cdot b \cdot a}+\sqrt[3]{b \cdot \dfrac{b+c}{2} \cdot c}+\sqrt[3]{a \cdot c \cdot \dfrac{a+c}{2}}\right)^{3} \\ & \geqslant \dfrac{1}{27}(\sqrt[3]{\sqrt{a b} \cdot a \cdot b}+\sqrt[3]{\sqrt{b c} \cdot b \cdot c}+\sqrt[3]{\sqrt{c a} \cdot c \cdot a})^{3} \\ &=\dfrac{1}{27}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})^{3} \end{aligned}
    所以\dfrac{a+b+c}{3}\geqslant\sqrt[3]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}}\geqslant\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{3}.

    2022-03-01-03

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P025 例30)

    abc是正实数,求证:
    \left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right)\geqslant \left(a+b+c\right)^{3}.
    证明

    对于x\in \mathbb{R}^{+},x^{2}-1x^{3}-1具有相同的符号,所以
    \left(x^{2}-1\right)\left(x^{3}-1\right)\geqslant 0,
    x^{5}-x^{2}+3\geqslant x^{3}+2.

    于是\left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right)\geqslant \left(a^{3}+2\right)\left(b^{3}+2\right)\left(c^{3}+2\right).

    而由(H"older不等式),有
    \begin{aligned} \left(a^{3}+2\right)\left(b^{3}+2\right)\left(c^{3}+2\right) &=\left(a^{3}+1+1\right)\left(1+b^{3}+1\right)\left(1+1+c^{3}\right) \\ & \geqslant(a+b+c)^{3}, \end{aligned}
    从而命题得证.

    2022-03-01-04

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P025 例31)

    幂平均不等式a_{1},a_{2},\cdots ,a_{n}是正实数,\alpha>\beta>0,则
    \left(\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\beta}\right)^{\dfrac{1}{\beta}} \leqslant\left(\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\alpha}\right)^{\dfrac{1}{a}} .
    证明

    由H"older不等式,令x^{i}=1,i=1,2,\cdots ,n,有
    \sum\limits_{i=1}^{n} y_{i} \leqslant n^{\dfrac{1}{p}}\left(\sum\limits_{i=1}^{n} y_{i}^{q}\right)^{\dfrac{1}{q}}.
    \dfrac{1}{p}=1-\dfrac{1}{q},所以上式可以写成
    \frac{1}{n} \sum\limits_{i=1}^{n} y_{i} \leqslant\left(\frac{1}{n} \sum\limits_{i=1}^{n} y_{i}^{q}\right)^{\frac{1}{q}}.
    在上式中,令y_{i}=a_{i}^{\beta},q=\dfrac{\alpha}{\beta}>1,得\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\beta} \leqslant\left(\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\alpha}\right)^{\frac{\beta}{\alpha}},于是\left(\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\beta}\right)^{\frac{1}{\beta}} \leqslant\left(\dfrac{1}{n} \sum\limits_{i=1}^{n} a_{i}^{\alpha}\right)^{\frac{1}{\alpha}}.

    相关文章

      网友评论

        本文标题:高中奥数 2022-03-01

        本文链接:https://www.haomeiwen.com/subject/zfldrrtx.html