美文网首页
torchvision库

torchvision库

作者: 丫头_631e | 来源:发表于2019-07-09 21:30 被阅读0次

    torchvision是独立于pytorch的关于图像操作的一些方便工具库。

    torchvision主要包括一下几个包:

    vision.datasets: 几个常用视觉数据集,可以下载和加载,这里主要的高级用法就是可以看源码如何自己写自己的Dataset的子类

    vision.models: 流行的模型,例如 AlexNet, VGG, ResNet 和 Densenet 以及 与训练好的参数。

    vision.transforms: 常用的图像操作,例如:随机切割,旋转,数据类型转换,图像到tensor ,numpy 数组到tensor , tensor 到 图像等。

    vision.utils: 用于把形似 (3 x H x W) 的张量保存到硬盘中,给一个mini-batch的图像可以产生一个图像格网。

    数据集 torchvision.datasets

    包括以下数据集:

    MNIST

    Fashion-MNIST

    KMNIST

    EMNIST

    FakeData

    COCO

    Captions

    Detection

    LSUN

    ImageFolder

    DatasetFolder

    Imagenet-12

    CIFAR

    STL10

    SVHN

    PhotoTour

    SBU

    Flickr

    VOC

    Cityscapes

    SBD

    数据集有 API: -__getitem__-__len__他们都是torch.utils.data.Dataset的子类。这样我们在实现我们自己的Dataset数据集的时候至少要实现上边两个方法。

    因此,他们可以使用torch.utils.data.DataLoader里的多线程 (python multiprocessing) 。

    MNIST

    dset.MNIST(root, train=True, transform=None, target_transform=None, download=False)

    root:数据的目录,里边有processed/training.pt和processed/test.pt的内容

    train:True-使用训练集,False-使用测试集.

    transform: 给输入图像施加变换

    target_transform:给目标值(类别标签)施加的变换

    download: 是否下载mnist数据集

    COCO

    This requires theCOCO API to be installed

    Captions:

    dset.CocoCaptions(root="dir where images are",annFile="json annotation file", [transform, target_transform])

    Example:

    importtorchvision.datasetsasdsetimporttorchvision.transformsastransformscap=dset.CocoCaptions(root='dir where images are',annFile='json annotation file',transform=transforms.ToTensor())print('Number of samples: ',len(cap))img,target=cap[3]# load 4th sampleprint("Image Size: ",img.size())print(target)

    Output:

    Number of samples: 82783

    Image Size: (3L, 427L, 640L)

    [u'A plane emitting smoke stream flying over a mountain.',

    u'A plane darts across a bright blue sky behind a mountain covered in snow',

    u'A plane leaves a contrail above the snowy mountain top.',

    u'A mountain that has a plane flying overheard in the distance.',

    u'A mountain view with a plume of smoke in the background']

    Detection:

    dset.CocoDetection(root="dir where images are",annFile="json annotation file", [transform, target_transform])

    LSUN

    dset.LSUN(db_path,classes='train', [transform, target_transform])

    db_path= root directory for the database files

    classes=

    'train'- all categories, training set

    'val'- all categories, validation set

    'test'- all categories, test set

    ['bedroom_train','church_train', …] : a list of categories to load

    CIFAR

    dset.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)

    dset.CIFAR100(root, train=True, transform=None, target_transform=None, download=False)

    root: root directory of dataset where there is foldercifar-10-batches-py

    train:True= Training set,False= Test set

    download:True= downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, does not do anything.

    STL10

    dset.STL10(root,split='train', transform=None, target_transform=None, download=False)

    root: root directory of dataset where there is folderstl10_binary

    split:'train'= Training set,'test'= Test set,'unlabeled'= Unlabeled set,

    'train+unlabeled'= Training + Unlabeled set (missing label marked as-1)

    download:True= downloads the dataset from the internet and

    puts it in root directory. If dataset is already downloaded, does not do anything.

    SVHN

    dset.SVHN(root,split='train', transform=None, target_transform=None, download=False)

    root: root directory of dataset where there is folderSVHN

    split:'train'= Training set,'test'= Test set,'extra'= Extra training set

    download:True= downloads the dataset from the internet and

    puts it in root directory. If dataset is already downloaded, does not do anything.

    ImageFolder

    一个通用的数据加载器,图像应该按照以下方式放置:

    root/dog/xxx.png

    root/dog/xxy.png

    root/dog/xxz.png

    root/cat/123.png

    root/cat/nsdf3.png

    root/cat/asd932_.png

    dset.ImageFolder(root="root folder path", [transform, target_transform])

    ImageFolder有以下成员:

    self.classes- 类别名列表

    self.class_to_idx- 类别名到标签,例如 “狗”-->[1,0,0]

    self.imgs- 一个包括 (image path, class-index) 元组的列表。

    Imagenet-12

    This is simply implemented with an ImageFolder dataset.

    The data is preprocessedas described here

    Here is an example.

    PhotoTour

    Learning Local Image Descriptors Datahttp://phototour.cs.washington.edu/patches/default.htm

    importtorchvision.datasetsasdsetimporttorchvision.transformsastransformsdataset=dset.PhotoTour(root='dir where images are',name='name of the dataset to load',transform=transforms.ToTensor())print('Loaded PhotoTour: {} with {} images.'.format(dataset.name,len(dataset.data)))


    模型

    models 子包含了以下的模型框架:

    AlexNet 

    VGG

    ResNet

    SqueezeNet

    DenseNet

    Inceptionv3

    GoogLeNet

    这里对于每种模型里可能包含很多子模型,比如Resnet就有 34,51,101,152不同层数。

    这些成熟的模型的意义就是你可以在torchvision的安装路径下找到 可以通过命令

    print(torchvision.models.__file__)  

    #'d:\\Anaconda3\\lib\\site-packages\\torchvision\\models\\__init__.py'

    学习这些优秀的模型是如何搭建的。

    你可以用随机参数初始化一个模型:

    importtorchvision.modelsasmodelsresnet18=models.resnet18()alexnet=models.alexnet()vgg16=models.vgg16()squeezenet=models.squeezenet1_0()

    我们提供了预训练的ResNet的模型参数,以及 SqueezeNet 1.0 and 1.1, and AlexNet, 使用 PyTorchmodel zoo. 可以在构造函数里添加pretrained=True:

    importtorchvision.modelsasmodelsresnet18=models.resnet18(pretrained=True)alexnet=models.alexnet(pretrained=True)squeezenet=models.squeezenet1_0(pretrained=True)

    所有的预训练模型期待输入同样标准化的数据,例如mini-baches 包括形似(3*H*W)的3通道的RGB图像,H,W最少是224。

    图像的范围必须在[0,1]之间,然后使用mean=[0.485, 0.456, 0.406]andstd=[0.229, 0.224, 0.225]  进行标准化。

    相关的例子在:the imagenet example here<https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>


    变换

    变换(Transforms)是常用的图像变换。可以通过transforms.Compose进行连续操作:

    transforms.Compose

    你可以组合几个变换在一起,例如:

    transform=transforms.Compose([transforms.RandomSizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225]),])

    PIL.Image支持的变换

    Scale(size, interpolation=Image.BILINEAR)

    缩放输入的 PIL.Image到给定的“尺寸”。 ‘尺寸’ 指的是较短边的尺寸.

    例如,如果 height > width, 那么图像将被缩放为 (size * height / width, size) - size: 图像较短边的尺寸- interpolation: Default: PIL.Image.BILINEAR

    CenterCrop(size)- 从中间裁剪图像到指定大小

    从中间裁剪一个 PIL.Image 到给定尺寸. 尺寸可以是一个元组 (target_height, target_width) 或一个整数,整数将被认为是正方形的尺寸 (size, size)

    RandomCrop(size, padding=0)

    Crops the given PIL.Image at a random location to have a region of the given size. size can be a tuple (target_height, target_width) or an integer, in which case the target will be of a square shape (size, size) Ifpaddingis non-zero, then the image is first zero-padded on each side withpaddingpixels.

    RandomHorizontalFlip()

    随机进行PIL.Image图像的水平翻转,概率是0.5.

    RandomSizedCrop(size, interpolation=Image.BILINEAR)

    Random crop the given PIL.Image to a random size of (0.08 to 1.0) of

    the original size and and a random aspect ratio of 3/4 to 4/3 of the

    original aspect ratio

    This is popularly used to train the Inception networks - size: size

    of the smaller edge - interpolation: Default: PIL.Image.BILINEAR

    Pad(padding, fill=0)

    Pads the given image on each side withpaddingnumber of pixels, and the padding pixels are filled with pixel valuefill. If a5x5image is padded withpadding=1then it becomes7x7

    对于 torch.*Tensor 的变换

    Normalize(mean, std)

    Given mean: (R, G, B) and std: (R, G, B), will normalize each channel

    of the torch.*Tensor, i.e. channel = (channel - mean) / std

    转换变换

    ToTensor()- Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]

    ToPILImage()- Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]

    广义变换

    Lambda(lambda)

    Given a Python lambda, applies it to the inputimgand returns it. For example:

    transforms.Lambda(lambdax:x.add(10))

    便利函数

    make_grid(tensor, nrow=8, padding=2, normalize=False, range=None, scale_each=False)

    Given a 4D mini-batch Tensor of shape (B x C x H x W), or a list of images all of the same size, makes a grid of images

    normalize=True will shift the image to the range (0, 1), by subtracting the minimum and dividing by the maximum pixel value.

    if range=(min, max) where min and max are numbers, then these numbers are used to normalize the image.

    scale_each=True will scale each image in the batch of images separately rather than computing the (min, max) over all images.

    Example usage is given in this notebook<https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a91>

    save_image(tensor, filename, nrow=8, padding=2, normalize=False, range=None, scale_each=False)

    Saves a given Tensor into an image file.

    If given a mini-batch tensor, will save the tensor as a grid of images.

    All options afterfilenameare passed through tomake_grid. Refer to it’s documentation for more details

    用以输出图像的拼接,很方便。

    没想到这篇文章阅读量这么大,考虑跟新下。

    图像引擎:由于需要读取处理图片所以需要相关的图像库。现在torchvision可以支持多个图像读取库,可以切换。

    使用的函数是:

    torchvision.get_image_backend()#获取图像存取引擎

    torchvision.set_image_backend(backend)   #改变图像读取引擎

    #backend(string) –图像引擎的名字:是  {‘PIL’, ‘accimage’}其中之一。accimage包使用的是因特尔(Intel) IPP 库。它的速度快于PIL,但是并不支持很多的图像操作。

    由于这个是后边的,普通用处不大,知道即可。

    相关文章

      网友评论

          本文标题:torchvision库

          本文链接:https://www.haomeiwen.com/subject/zftqkctx.html