美文网首页Spark商业环境实战专栏
Spark内置框架rpc通讯机制及RpcEnv基础设施-Spar

Spark内置框架rpc通讯机制及RpcEnv基础设施-Spar

作者: 开心技术社区 | 来源:发表于2018-11-01 09:36 被阅读0次

    版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。版权声明:禁止转载,欢迎学习。

    Spark商业环境实战及调优进阶系列

    1. Spark 内置框架rpc通讯机制

    TransportContext 内部握有创建TransPortClient和TransPortServer的方法实现,但却属于最底层的RPC通讯设施。为什么呢?

    因为成员变量RPCHandler是抽象的,并没有具体的消息处理,而且TransportContext功能也在于创建TransPortClient客户端和TransPortServer服务端。具体解释如下:

     Contains the context to create a {@link TransportServer}, {@link TransportClientFactory}, and to
     setup Netty Channel pipelines with a
     {@link org.apache.spark.network.server.TransportChannelHandler}.
    

    所以TransportContext只能为最底层的通讯基础。上层为NettyRPCEnv高层封装,并持有TransportContext引用,在TransportContext中传入NettyRpcHandler实体,来实现netty通讯回调Handler处理。TransportContext代码片段如下:

     /* The TransportServer and TransportClientFactory both create a TransportChannelHandler for each
     * channel. As each TransportChannelHandler contains a TransportClient, this enables server
     * processes to send messages back to the client on an existing channel.
     */
      public class TransportContext {
      private final Logger logger = LoggerFactory.getLogger(TransportContext.class);
      private final TransportConf conf;
      private final RpcHandler rpcHandler;
      private final boolean closeIdleConnections;
    
      private final MessageEncoder encoder;
      private final MessageDecoder decoder;
    
      public TransportContext(TransportConf conf, RpcHandler rpcHandler) {
        this(conf, rpcHandler, false);
      }
    

    1.1 客户端和服务端统一的消息接收处理器 TransportChannelHandlerer

    TransportClient 和TransportServer 在配置Netty的pipeLine的handler处理器时,均采用TransportChannelHandler, 来做统一的消息receive处理。为什么呢?在于统一消息处理入口,TransportChannelHandlerer根据消息类型执行不同的处理,代码片段如下:

     public void channelRead(ChannelHandlerContext ctx, Object request) throws Exception {
        if (request instanceof RequestMessage) {
          requestHandler.handle((RequestMessage) request);
       } else if (request instanceof ResponseMessage) {
          responseHandler.handle((ResponseMessage) request);
       } else {
          ctx.fireChannelRead(request);
       }
    

    }

    TransportContext初始化Pipeline的代码片段:

      public TransportChannelHandler initializePipeline(
      SocketChannel channel,
      RpcHandler channelRpcHandler) {
      try {
        
      TransportChannelHandler channelHandler = createChannelHandler(channel,
      
      channelRpcHandler);
      channel.pipeline()
        .addLast("encoder", ENCODER)
        .addLast(TransportFrameDecoder.HANDLER_NAME, NettyUtils.createFrameDecoder())
        .addLast("decoder", DECODER)
        .addLast("idleStateHandler", new IdleStateHandler(0, 0,   
                       conf.connectionTimeoutMs() / 1000))
                       
        .addLast("handler", channelHandler);
        
      return channelHandler;
    } catch (RuntimeException e) {
      logger.error("Error while initializing Netty pipeline", e);
      throw e;
    }
    

    客户端和服务端统一的消息接收处理器 TransportChannelHandlerer 是这个函数:createChannelHandler(channel, channelRpcHandler)实现的,也即统一了这个netty的消息接受处理,代码片段如下:

        /**
        * Creates the server- and client-side handler which is used to handle both RequestMessages and
        * ResponseMessages. The channel is expected to have been successfully created, though certain
        * properties (such as the remoteAddress()) may not be available yet.
        */
        
        private TransportChannelHandler createChannelHandler(Channel channel,                                    RpcHandler rpcHandler) {
        
        TransportResponseHandler responseHandler = new                     
        TransportResponseHandler(channel);
        TransportClient client = new TransportClient(channel, responseHandler);
        
        TransportRequestHandler requestHandler = new TransportRequestHandler(channel, client,
        rpcHandler, conf.maxChunksBeingTransferred());
        
        return new TransportChannelHandler(client, responseHandler, requestHandler,
            conf.connectionTimeoutMs(), closeIdleConnections);
        }
    

    不过transportClient对应的是TransportResponseHander,TransportServer对应的的是TransportRequestHander。
    在进行消息处理时,首先会经过TransportChannelHandler根据消息类型进行处理器选择,分别进行netty的消息生命周期管理:

    • exceptionCaught
    • channelActive
    • channelInactive
    • channelRead
    • userEventTriggered

    1.2 transportClient对应的是ResponseMessage

    客户端一旦发送消息(均为Request消息),就会在

    private final Map<Long, RpcResponseCallback> outstandingRpcs;

    private final Map<StreamChunkId, ChunkReceivedCallback> outstandingFetches

    中缓存,用于回调处理。

    image

    1.3 transportServer对应的是RequestMessage

    服务端接收消息类型(均为Request消息)

    • ChunkFetchRequest
    • RpcRequest
    • OneWayMessage
    • StremRequest

    服务端响应类型(均为Response消息):

    • ChunkFetchSucess
    • ChunkFetchFailure
    • RpcResponse
    • RpcFailure

    2. Spark RpcEnv基础设施

    2.1 上层建筑NettyRPCEnv

    上层建筑NettyRPCEnv,持有TransportContext引用,在TransportContext中传入NettyRpcHandler实体,来实现netty通讯回调Handler处理

    • Dispatcher
    • TransportContext
    • TransPortClientFactroy
    • TransportServer
    • TransportConf

    2.2 RpcEndPoint 与 RPCEndPointRef 端点

    • RpcEndPoint 为服务端
    • RPCEndPointRef 为客户端

    2.2 Dispacher 与 Inbox 与 Outbox

    • 一个端点对应一个Dispacher,一个Inbox , 多个OutBox
    1. RpcEndpoint:RPC端点 ,Spark针对于每个节点(Client/Master/Worker)都称之一个Rpc端点 ,且都实现RpcEndpoint接口,内部根据不同端点的需求,设计不同的消息和不同的业务处理,如果需要发送(询问)则调用Dispatcher
    2. RpcEnv:RPC上下文环境,每个Rpc端点运行时依赖的上下文环境称之为RpcEnv
    3. Dispatcher:消息分发器,针对于RPC端点需要发送消息或者从远程RPC接收到的消息,分发至对应的指令收件箱/发件箱。如果指令接收方是自己存入收件箱,如果指令接收方为非自身端点,则放入发件箱
    4. Inbox:指令消息收件箱,一个本地端点对应一个收件箱,Dispatcher在每次向Inbox存入消息时,都将对应EndpointData加入内部待Receiver Queue中,另外Dispatcher创建时会启动一个单独线程进行轮询Receiver Queue,进行收件箱消息消费
    5. OutBox:指令消息发件箱,一个远程端点对应一个发件箱,当消息放入Outbox后,紧接着将消息通过TransportClient发送出去。消息放入发件箱以及发送过程是在同一个线程中进行,这样做的主要原因是远程消息分为RpcOutboxMessage, OneWayOutboxMessage两种消息,而针对于需要应答的消息直接发送且需要得到结果进行处理
    6. TransportClient:Netty通信客户端,根据OutBox消息的receiver信息,请求对应远程TransportServer
    7. TransportServer:Netty通信服务端,一个RPC端点一个TransportServer,接受远程消息后调用Dispatcher分发消息至对应收发件箱
    image

    Spark在Endpoint的设计上核心设计即为Inbox与Outbox,其中Inbox核心要点为:

    1. 内部的处理流程拆分为多个消息指令(InboxMessage)存放入Inbox
    2. 当Dispatcher启动最后,会启动一个名为【dispatcher-event-loop】的线程扫描Inbox待处理InboxMessage,并调用Endpoint根据InboxMessage类型做相应处理
    3. 当Dispatcher启动最后,默认会向Inbox存入OnStart类型的InboxMessage,Endpoint在根据OnStart指令做相关的额外启动工作,端点启动后所有的工作都是对OnStart指令处理衍生出来的,因此可以说OnStart指令是相互通信的源头。
    • 注意: 一个端点对应一个Dispacher,一个Inbox , 多个OutBox,可以看到 inbox在Dispacher 中且在EndPointData内部:

       private final RpcHandler rpcHandler;
      /**
      * A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s).
      */
       private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging {
       private class EndpointData(
          val name: String,
          val endpoint: RpcEndpoint,
          val ref: NettyRpcEndpointRef) {
        val inbox = new Inbox(ref, endpoint)
      }
      private val endpoints = new ConcurrentHashMap[String, EndpointData]
      private val endpointRefs = new ConcurrentHashMap[RpcEndpoint, RpcEndpointRef]
      
      // Track the receivers whose inboxes may contain messages.
      private val receivers = new LinkedBlockingQueue[EndpointData]
      
    image
    • 注意: 一个端点对应一个Dispacher,一个Inbox , 多个OutBox,可以看到 OutBox在NettyRpcEnv内部:

      private[netty] class NettyRpcEnv(
        val conf: SparkConf,
        javaSerializerInstance: JavaSerializerInstance,
        host: String,
        securityManager: SecurityManager) extends RpcEnv(conf) with Logging {
        
        private val dispatcher: Dispatcher = new Dispatcher(this)
        
        private val streamManager = new NettyStreamManager(this)
        private val transportContext = new TransportContext(transportConf,
        new NettyRpcHandler(dispatcher, this, streamManager))
        
      /**
       * A map for [[RpcAddress]] and [[Outbox]]. When we are connecting to a remote [[RpcAddress]],
       * we just put messages to its [[Outbox]] to implement a non-blocking `send` method.
       */
      private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()
      

    2.3 Dispacher 与 Inbox 与 Outbox

    Dispatcher的代码片段中,包含了核心的消息发送代码逻辑,意思是:向服务端发送一条消息,也即同时放进Dispatcher中的receiverrs中,也放进inbox的messages中。这个高层封装,如Master和Worker端点发送消息都是通过NettyRpcEnv中的 Dispatcher来实现的。在Dispatcher中有一个线程,叫做MessageLoop,实现消息的及时处理。

     /**
     * Posts a message to a specific endpoint.
     *
     * @param endpointName name of the endpoint.
     * @param message the message to post
      * @param callbackIfStopped callback function if the endpoint is stopped.
     */
     private def postMessage(
      endpointName: String,
      message: InboxMessage,
      callbackIfStopped: (Exception) => Unit): Unit = {
       val error = synchronized {
       val data = endpoints.get(endpointName)
       
      if (stopped) {
        Some(new RpcEnvStoppedException())
      } else if (data == null) {
        Some(new SparkException(s"Could not find $endpointName."))
      } else {
      
        data.inbox.post(message)
        receivers.offer(data)
        
        None
      }
     }
    

    注意:默认第一条消息为onstart,为什么呢?看这里:

    image image

    看到下面的 new EndpointData(name, endpoint, endpointRef) 了吗?

    def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
     val addr = RpcEndpointAddress(nettyEnv.address, name)
        val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
        synchronized {
      if (stopped) {
        throw new IllegalStateException("RpcEnv has been stopped")
      }
      if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
        throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
      }
      val data = endpoints.get(name)
      endpointRefs.put(data.endpoint, data.ref)
      receivers.offer(data)  // for the OnStart message
    }
    endpointRef
    

    }

    注意EndpointData里面包含了inbox,因此Inbox初始化的时候,放进了onstart

     private class EndpointData(
      val name: String,
      val endpoint: RpcEndpoint,
      val ref: NettyRpcEndpointRef) {
    val inbox = new Inbox(ref, endpoint)
    

    }

    onstart在Inbox初始化时出现了,注意每一个端点只有一个inbox,比如:master 节点。


    image

    2.4 发送消息流程为分为两种,一种端点(Master)自己把消息发送到本地Inbox,一种端点(Master)接收到消息后,通过TransPortRequestHander接收后处理,扔进Inbox

    2.4.1 端点(Master)自己把消息发送到本地Inbox
    - endpoint(Master) -> NettyRpcEnv-> Dispatcher ->  postMessage -> MessageLoop(Dispatcher) -> inbox -> process -> endpoint.receiveAndReply
    

    解释如下:端点通过自己的RPCEnv环境,向自己的Inbox中发送消息,然后交由Dispatch来进行消息的处理,调用了端点自己的receiveAndReply方法

    • 这里着重讲一下MessageLoop是什么时候启动的,参照Dispatcher的代码段如下,一旦初始化就会启动,因为是成员变量:

        private val threadpool: ThreadPoolExecutor = {
        val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads",
          math.max(2, Runtime.getRuntime.availableProcessors()))
        val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop")
        for (i <- 0 until numThreads) {
          pool.execute(new MessageLoop)
        }
         pool
       }
      
    • 接着讲nettyRpcEnv是何时初始化的,Dispatcher是何时初始化的?

    master初始化RpcEnv环境时,调用NettyRpcEnvFactory().create(config)进行初始化nettyRpcEnv,然后其成员变量Dispatcher开始初始化,然后Dispatcher内部成员变量threadpool开始启动messageLoop,然后开始处理消息,可谓是一环套一环啊。如下是Master端点初始化RPCEnv。


    image

    在NettyRpcEnv中,NettyRpcEnvFactory的create方法如下:

    image

    其中nettyRpcEnv.startServer,代码段如下,然后调用底层 transportContext.createServer来创建Server,并初始化netty 的 pipeline:

        server = transportContext.createServer(host, port, bootstraps)
        dispatcher.registerRpcEndpoint(
         RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))
    

    最终端点开始不断向自己的Inboxz中发送消息即可,代码段如下:

        private def postMessage(
          endpointName: String,
          message: InboxMessage,
          callbackIfStopped: (Exception) => Unit): Unit = {
          error = synchronized {
          val data = endpoints.get(endpointName)
          if (stopped) {
               Some(new RpcEnvStoppedException())
          } else if (data == null) {
              Some(new SparkException(s"Could not find $endpointName."))
          } else {
          
             data.inbox.post(message)
             receivers.offer(data)
             
             None
          }
        }
    
    2.4.2 端点(Master)接收到消息后,通过TransPortRequestHander接收后处理,扔进Inbox
    - endpointRef(Worker) ->TransportChannelHandler -> channelRead0 -> TransPortRequestHander -> handle -> processRpcRequest ->NettyRpcHandler(在NettyRpcEnv中)  -> receive ->  internalReceive -> dispatcher.postToAll(RemoteProcessConnected(remoteEnvAddress)) (响应)-> dispatcher.postRemoteMessage(messageToDispatch, callback) (发送远端来的消息放进inbox)-> postMessage -> inbox -> process
    

    如下图展示了整个消息接收到inbox的流程:


    image

    下图展示了 TransportChannelHandler接收消息:

        @Override
     public void channelRead0(ChannelHandlerContext ctx, Message request) throws Exception {
     if (request instanceof RequestMessage) {
      requestHandler.handle((RequestMessage) request);
    } else {
      responseHandler.handle((ResponseMessage) request);
    }
     }
    

    然后TransPortRequestHander来进行消息匹配处理:

    image

    最终交给inbox的process方法,实际上由端点 endpoint.receiveAndReply(context)方法处理:

     /**
     * Process stored messages.
     */
     def process(dispatcher: Dispatcher): Unit = {
      var message: InboxMessage = null
        inbox.synchronized {
      if (!enableConcurrent && numActiveThreads != 0) {
        return
      }
      message = messages.poll()
      if (message != null) {
        numActiveThreads += 1
      } else {
        return
      }
    }
    while (true) {
      safelyCall(endpoint) {
        message match {
          case RpcMessage(_sender, content, context) =>
            try {
              endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
                throw new SparkException(s"Unsupported message $message from ${_sender}")
              })
            } catch {
              case NonFatal(e) =>
                context.sendFailure(e)
                // Throw the exception -- this exception will be caught by the safelyCall function.
                // The endpoint's onError function will be called.
                throw e
            }
    
          case OneWayMessage(_sender, content) =>
            endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
              throw new SparkException(s"Unsupported message $message from ${_sender}")
            })
    
          case OnStart =>
            endpoint.onStart()
            if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
              inbox.synchronized {
                if (!stopped) {
                  enableConcurrent = true
                }
              }
            }
    
          case OnStop =>
            val activeThreads = inbox.synchronized { inbox.numActiveThreads }
            assert(activeThreads == 1,
              s"There should be only a single active thread but found $activeThreads threads.")
            dispatcher.removeRpcEndpointRef(endpoint)
            endpoint.onStop()
            assert(isEmpty, "OnStop should be the last message")
    
          case RemoteProcessConnected(remoteAddress) =>
            endpoint.onConnected(remoteAddress)
    
          case RemoteProcessDisconnected(remoteAddress) =>
            endpoint.onDisconnected(remoteAddress)
    
          case RemoteProcessConnectionError(cause, remoteAddress) =>
            endpoint.onNetworkError(cause, remoteAddress)
        }
      }
    
      inbox.synchronized {
        // "enableConcurrent" will be set to false after `onStop` is called, so we should check it
        // every time.
        if (!enableConcurrent && numActiveThreads != 1) {
          // If we are not the only one worker, exit
          numActiveThreads -= 1
          return
        }
        message = messages.poll()
        if (message == null) {
          numActiveThreads -= 1
          return
        }
      }
    }
    

    }

    3 结语

    本文花了将近两天时间进行剖析Spark的 Rpc 工作原理,真是不容易,关键是你看懂了吗?欢迎评论

    秦凯新 于深圳 2018-10-28

    相关文章

      网友评论

        本文标题:Spark内置框架rpc通讯机制及RpcEnv基础设施-Spar

        本文链接:https://www.haomeiwen.com/subject/zgetxqtx.html