k近邻算法

作者: 脚印无痕 | 来源:发表于2019-05-08 16:52 被阅读7次

k-NN算法可以说是最简单的机器学习算法,构建模型只需要保存训练数据集即可。对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”。k-NN可以用于指纹匹配。
监督机器学习问题主要有2种,即分类(classification)和回归(regression)。
分类问题的目标是预测类别标签,这些标签来自预定义的可选列表。回归任务的目标是预测一个连续值。区分分类任务和回归任务的一个简单方法就是:输出是否具有某种连续性。

1. k近邻分类

通过scikit-learn应用k近邻分类算法步骤如下:

1.1 导入需要使用的库

import numpy as np
import pandas as pd
import mglearn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

1.2 生成数据

X ,y = mglearn.datasets.make_forge()

这里的X,y都是numpy数组,其中X是一个26*2的二维数组,代表样本点数据,y是一维数组,代表对应样本点所属的分类。


image.png

1.3 拆分数据集

scikit-learn中的train_test_split函数可以打乱数据集并进行拆分,这个函数将75%的行数据及对应标签作为训练集,剩下25%作为作为测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

train_test_split函数先利用伪随机数生成器将数据打乱,确保测试集中包含所有类别的数据,为了确保多次运行同一函数能够得到相同的输出,我们利用random_state参数指定随机数生成器种子。
train_test_split函数的输出为X_train、X_test、y_train、y_test,它们都为numpy数组。

1.4 构建模型

k邻近分类算法是在scikit-learnneighbors模块的KNeighborsClassifier类中实现的,需要将这个类实例化为一个对象,然后才能使用这个模型。KNeighborsClassifier最重要的参数就是邻居的个数n_neighbors

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)

想要基于训练集来构建模型,需要调用KNeighborsClassifier实例化的对象的fit方法,输入参数为X_train和y_train,二者均为numpy数组,前者包含训练数据,后者包含响应的训练标签。

clf.fit(X_train, y_train)

1.5 做出预测

调用KNeighborsClassifier实例化的对象的predict方法来进行预测。对测试集中的每个测试点,都要计算它在训练集的最邻近,然后找出其中出现次数最多的类别。

print("Test set predictions:{}".format(clf.predict(X_test)))

1.6 模型评估

为了评估模型泛化能力的好坏,可以对测试数据和测试标签调用score方法:

print("Test set accuracy:{:.2f}".format(clf.score(X_test, y_test)))

2. k近邻回归

用于回归的k近邻算法在scikit-learnneighbors模块的KNeighborsRegressor类中实现。其用法与KNeighborsClassifier类似:

import numpy as np
import pandas as pd
import mglearn
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
X, y = mglearn.datasets.make_wave(n_samples=40)
# 将wave数据集分为数据集和训练集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# 模型实例化,邻居数设置为3
reg = KNeighborsRegressor(n_neighbors=3)
# 利用训练数据和训练目标值来拟合模型
reg.fit(X_train, y_train)
# 对测试集数据进行预测
print("Test set predictions:\n{}".format(reg.predict(X_test)))
# 对模型进行评估
print("Test set R^2:{.:2f}".format(reg.score(X_test, y_test)))

相关文章

  • “k 近邻算法”综述

    “k 近邻算法”综述 本来题目想叫“白话 k 近邻算法”,后来想想,“k 近邻算法” 的描述几乎就是“白话”,所以...

  • k 近邻法

    k 近邻法 k 近邻算法 k 近邻模型 k 近邻法的实现:kd 树 搜索 kd 树 k 近邻模型实现 k 近邻模型...

  • 十大经典算法(五)

    六、KNN(K Nearest Neighbor) K近邻(有监督) KNN算法,即K近邻算法是一种监督学习算法,...

  • 二:K近邻

    简介 K近邻算法,或者说K最近邻(kNN,k- NearestNeighbor)分类算法是数据挖掘分...

  • 最“懒惰”的kNN分类算法

    1. K-近邻算法#### k-近邻算法(k Nearest Neighbor),是最基本的分类算法,其基本思想是...

  • k近邻算法

    k近邻算法简介 k近邻算法(k-nearest neighbor, k-NN)是1967年由Cover T和Har...

  • 《算法图解》note 10 K近邻算法

    这是《算法图解》第十篇读书笔记,内容主要是K邻近算法的介绍。 1.K近邻算法简介 K近邻算法(K-nearest ...

  • 【机器学习实战】第2章 k-近邻算法(KNN)

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类...

  • 机器学习实战之K-近邻算法(二)

    机器学习实战之K-近邻算法(二) 2-1 K-近邻算法概述 简单的说,K-近邻算法采用测量不同特征值之间的距离方法...

  • K近邻

    一、模型 1.1概念 k-近邻算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。k-近邻算法...

网友评论

    本文标题:k近邻算法

    本文链接:https://www.haomeiwen.com/subject/ziqvoqtx.html