美文网首页程序员
分库分表【Sharding-JDBC】入门与项目实战

分库分表【Sharding-JDBC】入门与项目实战

作者: 陈添明 | 来源:发表于2020-07-14 08:53 被阅读0次

    最近项目中不少表的数据量越来越大,并且导致了一些数据库的性能问题。因此想借助一些分库分表的中间件,实现自动化分库分表实现。调研下来,发现Sharding-JDBC目前成熟度最高并且应用最广的Java分库分表的客户端组件。本文主要介绍一些Sharding-JDBC核心概念以及生产环境下的实战指南,旨在帮助组内成员快速了解Sharding-JDBC并且能够快速将其使用起来。Sharding-JDBC官方文档

    核心概念

    在使用Sharding-JDBC之前,一定是先理解清楚下面几个核心概念。

    逻辑表

    水平拆分的数据库(表)的相同逻辑和数据结构表的总称。例:订单数据根据主键尾数拆分为10张表,分别是t_order_0t_order_9,他们的逻辑表名为t_order

    真实表

    在分片的数据库中真实存在的物理表。即上个示例中的t_order_0t_order_9

    数据节点

    数据分片的最小单元。由数据源名称和数据表组成,例:ds_0.t_order_0

    绑定表

    指分片规则一致的主表和子表。例如:t_order表和t_order_item表,均按照order_id分片,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。举例说明,如果SQL为:

    SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    

    假设t_ordert_order_item对应的真实表各有2个,那么真实表就有t_order_0t_order_1t_order_item_0t_order_item_1。在不配置绑定表关系时,假设分片键order_id将数值10路由至第0片,将数值11路由至第1片,那么路由后的SQL应该为4条,它们呈现为笛卡尔积:

    SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    

    在配置绑定表关系后,路由的SQL应该为2条:

    SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);
    

    广播表

    指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不大且需要与海量数据的表进行关联查询的场景,例如:字典表。

    数据分片

    分片键

    用于分片的数据库字段,是将数据库(表)水平拆分的关键字段。例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段。 SQL 中如果无分片字段,将执行全路由,性能较差。 除了对单分片字段的支持,Sharding-JDBC 也支持根据多个字段进行分片。

    分片算法

    通过分片算法将数据分片,支持通过=、>=、<=、>、<、BETWEEN和IN分片。 分片算法需要应用方开发者自行实现,可实现的灵活度非常高。

    目前提供4种分片算法。 由于分片算法和业务实现紧密相关,因此并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。

    精确分片算法

    对应 PreciseShardingAlgorithm用于处理使用单一键作为分片键的 = 与 IN 进行分片的场景。需要配合 StandardShardingStrategy 使用。

    范围分片算法

    对应 RangeShardingAlgorithm用于处理使用单一键作为分片键的 BETWEEN AND、>、<、>=、<=进行分片的场景。需要配合 StandardShardingStrategy 使用。

    复合分片算法

    对应 ComplexKeysShardingAlgorithm,用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。需要配合 ComplexShardingStrategy 使用。

    Hint分片算法

    对应 HintShardingAlgorithm用于处理通过Hint指定分片值而非从SQL中提取分片值的场景。需要配合 HintShardingStrategy 使用。

    分片策略

    包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。真正可用于分片操作的是分片键 + 分片算法,也就是分片策略。目前提供 5 种分片策略。

    标准分片策略

    对应 StandardShardingStrategy。提供对 SQ L语句中的 =, >, <, >=, <=, IN 和 BETWEEN AND 的分片操作支持。 StandardShardingStrategy 只支持单分片键,提供 PreciseShardingAlgorithmRangeShardingAlgorithm 两个分片算法。 PreciseShardingAlgorithm 是必选的,用于处理 = 和 IN 的分片。 RangeShardingAlgorithm 是可选的,用于处理 BETWEEN AND, >, <, >=, <=分片,如果不配置 RangeShardingAlgorithm,SQL 中的 BETWEEN AND 将按照全库路由处理。

    复合分片策略

    对应 ComplexShardingStrategy。复合分片策略。提供对 SQL 语句中的 =, >, <, >=, <=, IN 和 BETWEEN AND 的分片操作支持。 ComplexShardingStrategy 支持多分片键,由于多分片键之间的关系复杂,因此并未进行过多的封装,而是直接将分片键值组合以及分片操作符透传至分片算法,完全由应用开发者实现,提供最大的灵活度。

    行表达式分片策略

    对应 InlineShardingStrategy。使用 Groovy 的表达式,提供对 SQL 语句中的 = 和 IN的分片操作支持,只支持单分片键。 对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: t_user_$->{u_id % 8} 表示 t_user 表根据 u_id 模 8,而分成 8 张表,表名称为 t_user_0t_user_7可以认为是精确分片算法的简易实现

    Hint分片策略

    对应 HintShardingStrategy。通过 Hint 指定分片值而非从 SQL 中提取分片值的方式进行分片的策略。

    分布式主键

    用于在分布式环境下,生成全局唯一的id。Sharding-JDBC 提供了内置的分布式主键生成器,例如 UUIDSNOWFLAKE。还抽离出分布式主键生成器的接口,方便用户自行实现自定义的自增主键生成器。为了保证数据库性能,主键id还必须趋势递增,避免造成频繁的数据页面分裂。

    读写分离

    提供一主多从的读写分离配置,可独立使用,也可配合分库分表使用。

    • 同一线程且同一数据库连接内,如有写入操作,以后的读操作均从主库读取,用于保证数据一致性
    • 基于Hint的强制主库路由。
    • 主从模型中,事务中读写均用主库。

    执行流程

    Sharding-JDBC 的原理总结起来很简单: 核心由 SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并的流程组成。

    Sharding-JDBC执行流程

    项目实战

    spring-boot项目实战

    引入依赖

    <dependency>
        <groupId>org.apache.shardingsphere</groupId>
        <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
        <version>4.0.1</version>
    </dependency>
    

    数据源配置

    如果使用sharding-jdbc-spring-boot-starter, 并且数据源以及数据分片都使用shardingsphere进行配置,对应的数据源会自动创建并注入到spring容器中。

    spring.shardingsphere.datasource.names=ds0,ds1
    
    spring.shardingsphere.datasource.ds0.type=org.apache.commons.dbcp.BasicDataSource
    spring.shardingsphere.datasource.ds0.driver-class-name=com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.ds0.url=jdbc:mysql://localhost:3306/ds0
    spring.shardingsphere.datasource.ds0.username=root
    spring.shardingsphere.datasource.ds0.password=
    
    spring.shardingsphere.datasource.ds1.type=org.apache.commons.dbcp.BasicDataSource
    spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.jdbc.Driver
    spring.shardingsphere.datasource.ds1.url=jdbc:mysql://localhost:3306/ds1
    spring.shardingsphere.datasource.ds1.username=root
    spring.shardingsphere.datasource.ds1.password=
    
    # 其它分片配置
    

    但是在我们已有的项目中,数据源配置是单独的。因此要禁用sharding-jdbc-spring-boot-starter里面的自动装配,而是参考源码自己重写数据源配置。需要在启动类上加上@SpringBootApplication(exclude = {org.apache.shardingsphere.shardingjdbc.spring.boot.SpringBootConfiguration.class})来排除。然后自定义配置类来装配DataSource

    @Configuration
    @Slf4j
    @EnableConfigurationProperties({
            SpringBootShardingRuleConfigurationProperties.class,
            SpringBootMasterSlaveRuleConfigurationProperties.class, SpringBootEncryptRuleConfigurationProperties.class, SpringBootPropertiesConfigurationProperties.class})
    @AutoConfigureBefore(DataSourceConfiguration.class)
    public class DataSourceConfig implements ApplicationContextAware {
    
        @Autowired
        private SpringBootShardingRuleConfigurationProperties shardingRule;
    
        @Autowired
        private SpringBootPropertiesConfigurationProperties props;
    
        private ApplicationContext applicationContext;
    
        @Bean("shardingDataSource")
        @Conditional(ShardingRuleCondition.class)
        public DataSource shardingDataSource() throws SQLException {
            // 获取其它方式配置的数据源
            Map<String, DruidDataSourceWrapper> beans = applicationContext.getBeansOfType(DruidDataSourceWrapper.class);
            Map<String, DataSource> dataSourceMap = new HashMap<>(4);
            beans.forEach(dataSourceMap::put);
            // 创建shardingDataSource
            return ShardingDataSourceFactory.createDataSource(dataSourceMap, new ShardingRuleConfigurationYamlSwapper().swap(shardingRule), props.getProps());
        }
    
        @Bean
        public SqlSessionFactory sqlSessionFactory() throws SQLException {
            SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
            // 将shardingDataSource设置到SqlSessionFactory中
            sqlSessionFactoryBean.setDataSource(shardingDataSource());
            // 其它设置
            return sqlSessionFactoryBean.getObject();
        }
    }
    

    分布式id生成器配置

    Sharding-JDBC提供了UUIDSNOWFLAKE生成器,还支持用户实现自定义id生成器。比如可以实现了type为SEQ的分布式id生成器,调用统一的分布式id服务获取id。

    @Data
    public class SeqShardingKeyGenerator implements ShardingKeyGenerator {
    
        private Properties properties = new Properties();
    
        @Override
        public String getType() {
            return "SEQ";
        }
    
        @Override
        public synchronized Comparable<?> generateKey() {
           // 获取分布式id逻辑
        }
    }
    

    由于扩展ShardingKeyGenerator是通过JDK的serviceloader的SPI机制实现的,因此还需要在resources/META-INF/services目录下配置org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator文件。 文件内容就是SeqShardingKeyGenerator类的全路径名。这样使用的时候,指定分布式主键生成器的type为SEQ就好了。

    至此,Sharding-JDBC就整合进spring-boot项目中了,后面就可以进行数据分片相关的配置了。

    数据分片实战

    如果项目初期就能预估出表的数据量级,当然可以一开始就按照这个预估值进行分库分表处理。但是大多数情况下,我们一开始并不能准备预估出数量级。这时候通常的做法是:

    1. 线上数据某张表查询性能开始下降,排查下来是因为数据量过大导致的。
    2. 根据历史数据量预估出未来的数据量级,并结合具体业务场景确定分库分表策略。
    3. 自动分库分表代码实现。

    下面就以一个具体事例,阐述具体数据分片实战。比如有张表数据结构如下:

    CREATE TABLE `hc_question_reply_record` (
      `id` bigint NOT NULL AUTO_INCREMENT COMMENT '自增ID',
      `reply_text` varchar(500) NOT NULL DEFAULT '' COMMENT '回复内容',
      `reply_wheel_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '回复时间',
    
      `ctime` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
      `mtime` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
      PRIMARY KEY (`id`),
      INDEX `idx_reply_wheel_time` (`reply_wheel_time`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci
      COMMENT='回复明细记录';
    
    

    分片方案确定

    先查询目前目标表月新增趋势:

    SELECT count(*), date_format(ctime, '%Y-%m') AS `日期`
    FROM hc_question_reply_record
    GROUP BY date_format(ctime, '%Y-%m');
    
    month-increse.png

    目前月新增在180w左右,预估未来达到300w(基本以2倍计算)以上。期望单表数据量不超过1000w,可使用reply_wheel_time作为分片键按季度归档。

    分片配置

    spring:
      # sharing-jdbc配置
      shardingsphere:
        # 数据源名称
        datasource:
          names: defaultDataSource,slaveDataSource
        sharding:
          # 主从节点配置
          master-slave-rules:
            defaultDataSource:
              # maser数据源
              master-data-source-name: defaultDataSource
              # slave数据源
              slave-data-source-names: slaveDataSource
          tables:
            # hc_question_reply_record 分库分表配置
            hc_question_reply_record:
              # 真实数据节点  hc_question_reply_record_2020_q1
              actual-data-nodes: defaultDataSource.hc_question_reply_record_$->{2020..2025}_q$->{1..4}
              # 表分片策略
              table-strategy:
                standard:
                  # 分片键
                  sharding-column: reply_wheel_time
                  # 精确分片算法 全路径名
                  preciseAlgorithmClassName: com.xx.QuestionRecordPreciseShardingAlgorithm
                  # 范围分片算法,用于BETWEEN,可选。。该类需实现RangeShardingAlgorithm接口并提供无参数的构造器
                  rangeAlgorithmClassName: com.xx.QuestionRecordRangeShardingAlgorithm
    
          # 默认分布式id生成器
          default-key-generator:
            type: SEQ
            column: id
    

    分片算法实现

    • 精确分片算法:QuestionRecordPreciseShardingAlgorithm

      public class QuestionRecordPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Date> {
        /**
         * Sharding.
         *
         * @param availableTargetNames available data sources or tables's names
         * @param shardingValue        sharding value
         * @return sharding result for data source or table's name
         */
        @Override
        public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
            return ShardingUtils.quarterPreciseSharding(availableTargetNames, shardingValue);
        }
      }
      
    • 范围分片算法:QuestionRecordRangeShardingAlgorithm

      public class QuestionRecordRangeShardingAlgorithm implements RangeShardingAlgorithm<Date> {
      
      
        /**
         * Sharding.
         *
         * @param availableTargetNames available data sources or tables's names
         * @param shardingValue        sharding value
         * @return sharding results for data sources or tables's names
         */
        @Override
        public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
            return ShardingUtils.quarterRangeSharding(availableTargetNames, shardingValue);
        }
      }
      
    • 具体分片实现逻辑:ShardingUtils

      @UtilityClass
      public class ShardingUtils {
          public static final String QUARTER_SHARDING_PATTERN = "%s_%d_q%d";
      
          /**
          * logicTableName_{year}_q{quarter}
          * 按季度范围分片
          * @param availableTargetNames 可用的真实表集合
          * @param shardingValue 分片值
          * @return
          */
          public Collection<String> quarterRangeSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> shardingValue) {
              Range<Date> valueRange = shardingValue.getValueRange();
              Date lower = valueRange.lowerEndpoint();
              Date upper = valueRange.upperEndpoint();
              LocalDate lowerLocalDate =
                      lower.toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
              LocalDate upperLocalDate =
                      upper.toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
              int lowerYear = lowerLocalDate.getYear();
              int lowerMonth = lowerLocalDate.getMonthValue();
              int lowerQuarter = getQuarter(lowerMonth);
      
              int upperYear = upperLocalDate.getYear();
              int upperMonth = upperLocalDate.getMonthValue();
              int upperQuarter = getQuarter(upperMonth);
      
              String logicTableName = shardingValue.getLogicTableName();
              List<String> actualTableNames = new ArrayList<>();
      
              if (lowerYear == upperYear) {
                  // 不跨年
                  for (int quarter = lowerQuarter; quarter <= upperQuarter; quarter++) {
                      String actualTableName = String.format(QUARTER_SHARDING_PATTERN, logicTableName, lowerYear, quarter);
                      actualTableNames.add(actualTableName);
                  }
              } else {
                  // 跨年
                  for (int quarter = lowerQuarter; quarter <= Constant.INT_4; quarter++) {
                      String actualTableName = String.format(QUARTER_SHARDING_PATTERN, logicTableName, lowerYear, quarter);
                      actualTableNames.add(actualTableName);
                  }
      
                  for (int year = lowerYear + 1; year < upperYear; year++) {
                      for (int quarter = 1; quarter <= Constant.INT_4; quarter++) {
                          String actualTableName = String.format(QUARTER_SHARDING_PATTERN, logicTableName, year, quarter);
                          actualTableNames.add(actualTableName);
                      }
                  }
      
                  for (int quarter = 1; quarter <= upperQuarter; quarter++) {
                      String actualTableName = String.format(QUARTER_SHARDING_PATTERN, logicTableName, upperYear, quarter);
                      actualTableNames.add(actualTableName);
                  }
      
              }
      
              if (!availableTargetNames.containsAll(actualTableNames)) {
                  throw new IllegalArgumentException("分片异常!shardingValue=" + shardingValue + "; availableTargetNames=" + availableTargetNames);
              }
              return actualTableNames;
          }
      
          /**
          * logicTableName_{year}_q{quarter}
          * 按季度精确分片
          * @param availableTargetNames 可用的真实表集合
          * @param shardingValue 分片值
          * @return
          */
          public static String quarterPreciseSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> shardingValue) {
              String logicTableName = shardingValue.getLogicTableName();
              Date value = shardingValue.getValue();
              LocalDate localDate =
                      value.toInstant().atZone(ZoneId.systemDefault()).toLocalDate();
              int year = localDate.getYear();
              int month = localDate.getMonthValue();
              int quarter = getQuarter(month);
              String actualTableName = String.format(QUARTER_SHARDING_PATTERN, logicTableName, year, quarter);
              if (availableTargetNames.contains(actualTableName)) {
                  return actualTableName;
              }
              throw new IllegalArgumentException("分片异常!shardingValue=" + shardingValue + "; availableTargetNames=" + availableTargetNames);
          }
      
          private static int getQuarter(int month) {
              if (month >= Constant.INT_1 && month <= Constant.INT_3) {
                  return Constant.INT_1;
              } else if (month >= Constant.INT_4 && month <= Constant.INT_6) {
                  return Constant.INT_2;
              } else if (month >= Constant.INT_7 && month <= Constant.INT_9) {
                  return Constant.INT_3;
              } else if (month >= Constant.INT_10 && month <= Constant.INT_12) {
                  return Constant.INT_4;
              } else {
                  throw new IllegalArgumentException("month非法!month=" + month);
              }
          }
      }
      
      

    到这里,针对hc_question_reply_record表,使用reply_wheel_time作为分片键,按照季度分片的处理就完成了。还有一点要注意的就是,分库分表之后,查询的时候最好都带上分片键作为查询条件,否则就会使用全库路由,性能很低。 还有就是Sharing-JDBC对mysql的全文索引支持的不是很好,项目有使用到的地方也要注意一下。总结来说整个过程还是比较简单的,后续碰到其它业务场景,相信大家按照这个思路肯定都能解决的。

    相关文章

      网友评论

        本文标题:分库分表【Sharding-JDBC】入门与项目实战

        本文链接:https://www.haomeiwen.com/subject/zixxhktx.html