通过在印版上安排数以百万计的微小变换,进入一边的光线从另一端发出,这样系统就能以超过90%的准确度分辨出它是1 2 3等等。
你问这有什么用?事实上现在还没有。但是神经网络是一种非常灵活的工具,它完全有可能使系统识别字母而不是数字,使光学字符识别系统完全在硬件上工作,而几乎不需要功耗或计算。为什么不需要基本的人脸或图形识别,不需要CPU?那在你的相机里会有多大用处呢?
这里真正的限制是制造型的:很难用精确的精度来制造衍射板,并完成一些更苛刻的加工。毕竟,如果你需要计算到小数点后第七位,但是打印出来的版本只精确到第三位,这时你就会遇到麻烦。
这只是一个概念证明——事实上对于巨型数字识别机器的需求并不迫切——但这是一个非常有趣的机器。这一想法可能会对相机和机器学习技术产生影响,在现实世界而不是数字世界中构造光线和数据。它可能感觉是在倒退,但也许只是钟摆在往相反的方向摆动。
网友评论