美文网首页Java面经Java 杂谈
Java常见面试题汇总-----------JVM专题(JVM编

Java常见面试题汇总-----------JVM专题(JVM编

作者: 从菜鸟到老菜鸟 | 来源:发表于2019-04-17 21:47 被阅读2次

32、JVM编译器优化

32.1、JVM编译的过程

  1、解析与填充符号表过程
  1)、词法、语法分析
  词法分析将源代码的字符流转变为标记集合,单个字符是程序编写过程的最小元素,而标记则是编译过程的最小元素,javac中由com.sun.tools.javac.parser.Scanner类实现。
语法分析是根据token序列构造抽象语法树的过程。抽象语法树(AST)是一种用来描述程序代码语法结构的树形表示方式,语法树中的每一个节点都代表着程序代码中的语法结构,javac中,语法分析过程由com.sun.tools.javac.tree.parser.Parser类实现,这个阶段产生出的抽象语法树由com.sun.tools.javac.tree.JCTree类表示。
  2)、填充符号表
  enterTree()方法,符号表是由一组符号地址和符号信息构成的表格,符号表中登记的信息在编译的不同阶段都要用到。在语义分析中,符号表所登记的内容将用于语义检查和产生中间代码,在目标代码生成阶段,当对符号进行地址分配时,符号表是地址分配的依据。javac源码中由com.sun.tools.javac.comp.Enter类实现。

  2、插入式注解处理器的注解处理过程
  注解在运行期间发挥作用,通过插入式注解处理器标准API可以读取、修改、添加抽象语法树种的任意元素,若在处理注解期间对语法树进行修改,编译器将回到解析即填充符号表的过程重新处理,直到所有插入式注解处理器都没有再对语法树进行修改为止,每一次循环称为一个round。javac源码中插入式注解处理器的初始化过程是在initProrcessAnnotation()方法中完成的,而它的执行过程则是在processAnnotation()方法中完成。

  3、分析与字节码生成过程
  1)、标注检查
  attribute()方法,标注检查步骤检查的内容包括诸如变量使用前是否已经被声明、变量与赋值之间的数据类型是否够匹配以及常量折叠。javac中实现类是com.sun.tools.javac.comp.Attr类和com.sun.tools.javac.comp.Check类。
  2)、数据及控制流分析
  flow()方法,对程序上下文逻辑更进一步的验证,他可以检查出诸如程序局部变量在使用前是否赋值、方法的每条路径是否都有返回值、是否所有的受检查异常都被正确处理了问题。
  局部变量在常量池中没有CONSTANT_Fieldref_info的符号引用,自然没有访问标志的信息,甚至可能连名称都不会保存下来。
将局部变量声明为final,对运行期是没有影响的,变量的不变性仅仅由编译器在编译期间保障。
  3)、解语法糖
  也称糖衣语法,指在计算机中添加某种语法,这种语法对语言的功能没有影响,但是更方便程序员使用,通常来说,使用语法糖能够增加程序的可读性,从而减少程序代码出错的机会。java中最常用的是泛型、变长参数、自动装箱/拆箱等。
  4)、字节码生成
  javac编译的最后一个阶段,javac源码里面由com.sun.tools.javac.jvm.Gen类来完成,这个阶段不仅仅把前面各个步骤所生成的信息转化成字节码写到磁盘中,编译器还进行少量的代码添加转换工作。
  保证一定是按先执行父类的实例构造器,然后初始化变量,最后执行语句块的顺序进行。

32.2、javac语法糖

  1、泛型与类擦除
  java中的泛型它只在程序源码中存在,在编译后的字节码文件中,就已经替换为原来的原生类型,并在相应的地方插入了强制转换代码,对于运行期的java来说ArrayList<T>与ArrayList就是同一个类,java语言中的泛型实现方法称为类型擦除,基于这种方法的叫伪泛型。
  在Class文件格式中,只要描述符不是完全一致的两个方法就可以共存。
  Signature是解决伴随泛型而来的参数类型的识别问题中最重要的一项属性,它的作用就是存储一个方法在字节码层面的特征签名,这个属性中保存的参数类型并不是原生类型,而是包括了参数化类型的信息、擦除法所谓的擦除,仅仅是对方法的Code属性中的字节码进行擦除,实际上元数据中还是保留了泛型信息,这也是我们能够通过反射手段取得参数化类型的根本依据。

  2、自动装箱、拆箱与循环遍历

  3、条件编译
  java编译器并非一个个地编译Java文件,而是将所有编译单元的语法树顶级节点输入到待处理列表后再进行编译,因此各个文之间能够互相提供符号信息。
  java中根据布尔常量值的真假,编译器会把分支中不成立的代码块擦除掉。这一工作将在编译器解除语法糖阶段完成。

  4、常用语法糖
  泛型、自动装箱、自动拆箱、遍历循环、变长参数、条件编译、内部类、枚举类、断言语句、对枚举、字符串的switch,try与catch定义和关闭资源。

32.3、运行期JIT编译器

  java程序最初是通过解释器进行解释执行的,当虚拟机发现某个方法或者代码块的运行特别频繁时,就好把这些代码认定为“热点代码”,为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,完成这个任务的编译器称为即时编译器(JIT编译器),他是虚拟机中最核心且最能体现虚拟机水平的部分。
  JIT 是 just in time 的缩写,也就是即时编译器。使用即时编译器技术,能够加速Java 程序的执行速度。
  首先,我们大家都知道,通常通过 javac 将程序源代码编译,转换成 java 字节码,JVM 通过解释字节码将其翻译成对应的机器指令,逐条读入,逐条解释翻译。很显然,经过解释执行,其执行速度必然会比可执行的二进制字节码程序慢很多。为了提高执行速度,引入了 JIT 技术。
  在运行时 JIT 会把翻译过的机器码保存起来,以备下次使用,因此从理论上来说,采用该 JIT 技术可以接近以前纯编译技术。下面我们看看,JIT 的工作过程。

32.3.1、JIT 编译过程

  当 JIT 编译启用时(默认是启用的),JVM 读入.class 文件解释后,将其发给 JIT 编译器。JIT 编译器将字节码编译成本机机器代码,下图展示了该过程。


32.3.2、Hot Spot 编译

  当 JVM 执行代码时,它并不立即开始编译代码。这主要有两个原因:
  首先,如果这段代码本身在将来只会被执行一次,那么从本质上看,编译就是在浪费精力。 因为将代码翻译成 java 字节码相对于编译这段代码并执行代码来说,要快很多。
  当然,如果一段代码频繁的调用方法,或是一个循环,也就是这段代码被多次执行,那么编译就非常值得了。因此,编译器具有的这种权衡能力会首先执行解释后的代码,然后再去分辨哪些方法会被频繁调用来保证其本身的编译。其实说简单点,就是 JIT 在起作用,我们知道,对于 Java 代码,刚开始都是被编译器编译成字节码文件,然后字节码文件会被交由 JVM 解释执行,所以可以说 Java 本身是一种半编译半解释执行的语言。Hot Spot VM 采用了 JIT compile 技术,将运行频率很高的字节码直接编译为机器指令执行以提高性能,所以当字节码被 JIT 编译为机器码的时候,要说它是编译执行的也可以。也就是说,运行时,部分代码可能由 JIT 翻译为目标机器指令(以 method 为翻译单位,还会保存起来,第二次执行就不用翻译了)直接执行。
  第二个原因是最优化,当 JVM 执行某一方法或遍历循环的次数越多,就会更加了解代码结构,那么 JVM 在编译代码的时候就做出相应的优化。
  我们将在后面讲解这些优化策略,这里,先举一个简单的例子:我们知道 equals() 这个方法存在于每一个 Java Object 中(因为是从 Object class 继承而来)而且经常被覆写。当解释器遇到 b = obj1.equals(obj2) 这样一句代码,它则会查询 obj1 的类型从而得知到底运行哪一个 equals() 方法。而这个动态查询的过程从某种程度上说是很耗时的。
  例如JVM 注意到每次运行代码时,obj1 都是 java.lang.String 这种类型,那么JVM 生成的被编译后的代码则是直接调用 String.equals() 方法。这样代码的执行将变得非常快,因为不仅它是被编译过的,而且它会跳过查找该调用哪个方法的步骤。
  当然过程并不是上面所述这样简单,如果下次执行代码时,obj1 不再是 String 类型了,JVM 将不得不再生成新的字节码。尽管如此,之后执行的过程中,还是会变的更快,因为同样会跳过查找该调用哪个方法的步骤。这种优化只会在代码被运行和观察一段时间之后发生。这也就是为什么 JIT 编译器不会直接编译代码而是选择等待然后再去编译某些代码片段的第二个原因。

32.3.3、寄存器和主存

  其中一个最重要的优化策略是编译器可以决定何时从主存取值,何时向寄存器存值。考虑下面这段代码:
  清单 1、主存 or 寄存器测试代码

public class RegisterTest {
private int sum;

public void calculateSum(int n) {
        for (int i = 0; i < n; ++i) {
            sum += i;
        }
    }
}

  在某些时刻,sum 变量居于主存之中,但是从主存中检索值是开销很大的操作,需要多次循环才可以完成操作。正如上面的例子,如果循环的每一次都是从主存取值,性能是非常低的。相反,编译器加载一个寄存器给 sum 并赋予其初始值,利用寄存器里的值来执行循环,并将最终的结果从寄存器返回给主存。这样的优化策略则是非常高效的。但是线程的同步对于这种操作来说是至关重要的,因为一个线程无法得知另一个线程所使用的寄存器里变量的值,线程同步可以很好的解决这一问题。
  寄存器的使用是编译器的一个非常普遍的优化。

32.3.4、初级调优:客户模式或服务器模式

  JIT 编译器在运行程序时有两种编译模式可以选择,并且其会在运行时决定使用哪一种以达到最优性能。这两种编译模式的命名源自于命令行参数(eg: -client 或者-server)。JVM Server 模式与 client 模式启动,最主要的差别在于:-server 模式启动时,速度较慢,但是一旦运行起来后,性能将会有很大的提升。原因是:当虚拟机运行在-client 模式的时候,使用的是一个代号为 C1 的轻量级编译器,而-server 模式启动的虚拟机采用相对重量级代号为 C2 的编译器。C2 比 C1 编译器编译的相对彻底,服务起来之后,性能更高。
  通过 java -version 命令行可以直接查看当前系统使用的是 client 还是 server 模式。例如:

32.3.5、中级编译器调优

  大多数情况下,优化编译器其实只是选择合适的 JVM 以及为目标主机选择合适的编译器(-cient,-server 或是-xx:+TieredCompilation)。多层编译经常是长时运行应用程序的最佳选择,短暂应用程序则选择毫秒级性能的 client 编译器。
  1)、优化代码缓存
  当 JVM 编译代码时,它会将汇编指令集保存在代码缓存。代码缓存具有固定的大小,并且一旦它被填满,JVM 则不能再编译更多的代码。

  我们可以很容易地看到如果代码缓存很小所具有的潜在问题。有些热点代码将会被编译,而其他的则不会被编译,这个应用程序将会以运行大量的解释代码来结束。
  这是当使用 client 编译器模式或分层编译时很频繁的一个问题。当使用普通server编译器模式时,编译合格的类的数量将被填入代码缓存,通常只有少量的类会被编译。但是当使用 client 编译器模式时,编译合格的类的数量将会高很多。
  在 Java 7 版本,分层编译默认的代码缓存大小经常是不够的,需要经常提高代码缓存大小。大型项目若使用 client 编译器模式,则也需要提高代码缓存大小。
  现在并没有一个好的机制可以确定一个特定的应用到底需要多大的代码缓存。因此,当需要提高代码缓存时,这将是一种凑巧的操作,一个通常的做法是将代码缓存变成默认大小的两倍或四倍。
  可以通过 –XX:ReservedCodeCacheSize=Nflag(N 就是之前提到的默认大小)来最大化代码缓存大小。代码缓存的管理类似于 JVM 中的内存管理:有一个初始大小(用-XX:InitialCodeCacheSize=N 来声明)。代码缓存的大小从初始大小开始,随着缓存被填满而逐渐扩大。代码缓存的初始大小是基于芯片架构(例如 Intel 系列机器,client 编译器模式下代码缓存大小起始于 160KB,server 编译器模式下代码缓存大小则起始于 2496KB)以及使用的编译器的。重定义代码缓存的大小并不会真正影响性能,所以设置 ReservedCodeCacheSize 的大小一般是必要的。
  再者,如果 JVM 是 32 位的,那么运行过程大小不能超过 4GB。这包括了 Java 堆,JVM 自身所有的代码空间(包括其本身的库和线程栈),应用程序分配的任何的本地内存,当然还有代码缓存。
  所以说代码缓存并不是无限的,很多时候需要为大型应用程序来调优(或者甚至是使用分层编译的中型应用程序)。比如 64 位机器,为代码缓存设置一个很大的值并不会对应用程序本身造成影响,应用程序并不会内存溢出,这些额外的内存预定一般都是被操作系统所接受的。

  2)、编译阈值
  在 JVM 中,编译是基于两个计数器的:一个是方法被调用的次数,另一个是方法中循环被回弹执行的次数。
回弹可以有效的被认为是循环被执行完成的次数,不仅因为它是循环的结尾,也可能是因为它执行到了一个分支语句,例如 continue。
  当 JVM 执行一个 Java 方法,它会检查这两个计数器的总和以决定这个方法是否有资格被编译。如果有,则这个方法将排队等待编译。这种编译形式并没有一个官方的名字,但是一般被叫做标准编译。
  但是如果方法里有一个很长的循环或者是一个永远都不会退出并提供了所有逻辑的程序会怎么样呢?这种情况下,JVM 需要编译循环而并不等待方法被调用。所以每执行完一次循环,分支计数器都会自增和自检。如果分支计数器计数超出其自身阈值,那么这个循环(并不是整个方法)将具有被编译资格。
  这种编译叫做栈上替换(OSR),因为即使循环被编译了,这也是不够的:JVM 必须有能力当循环正在运行时,开始执行此循环已被编译的版本。换句话说,当循环的代码被编译完成,若 JVM 替换了代码(前栈),那么循环的下个迭代执行最新的被编译版本则会更加快。
  标准编译是被-XX:CompileThreshold=Nflag 的值所触发。Client 编译器模式下,N 默认的值 1500,而 Server 编译器模式下,N 默认的值则是 10000。改变 CompileThreshold 标志的值将会使编译器相对正常情况下提前(或推迟)编译代码。在性能领域,改变 CompileThreshold 标志是很被推荐且流行的方法。事实上,您可能知道 Java 基准经常使用此标志(比如:对于很多 server 编译器来说,经常在经过 8000 次迭代后改变此标志)。
  我们已经知道 client 编译器和 server 编译器在最终的性能上有很大的差别,很大程度上是因为编译器在编译一个特定的方法时,对于两种编译器可用的信息并不一样。降低编译阈值,尤其是对于 server 编译器,承担着不能使应用程序运行达到最佳性能的风险,但是经过测试应用程序我们也发现,将阈值从 8000 变成 10000,其实有着非常小的区别和影响。

  3)、检查编译过程
  中级优化的最后一点其实并不是优化本身,而是它们并不能提高应用程序的性能。它们是 JVM(以及其他工具)的各个标志,并可以给出编译工作的可见性。它们中最重要的就是--XX:+PrintCompilation(默认状态下是 false)。
  如果 PrintCompilation 被启用,每次一个方法(或循环)被编译,JVM 都会打印出刚刚编译过的相关信息。不同的 Java 版本输出形式不一样,我们这里所说的是基于 Java 7 版本的。
  编译日志中大部分的行信息都是下面的形式:
  清单 2. 日志形式

timestamp compilation_id attributes (tiered_level) method_name size depot

  这里 timestamp 是编译完成时的时间戳,compilation_id 是一个内部的任务 ID,且通常情况下这个数字是单调递增的,但有时候对于 server 编译器(或任何增加编译阈值的时候),您可能会看到失序的编译 ID。这表明编译线程之间有些快有些慢,但请不要随意推断认为是某个编译器任务莫名其妙的非常慢。

  4)、用 jstat 命令检查编译
  要想看到编译日志,则需要程序以-XX:+PrintCompilation flag 启动。如果程序启动时没有 flag,您可以通过 jstat 命令得到有限的可见性信息。
  Jstat 有两个选项可以提供编译器信息。其中,-compile 选项提供总共有多少方法被编译的总结信息(下面 6006 是要被检查的程序的进程 ID):
  清单 3 进程详情

% jstat -compiler 6006
CompiledFailedInvalid TimeFailedTypeFailedMethod
206 0 0 1.97 0

  注意,这里也列出了编译失败的方法的个数信息,以及编译失败的最后一个方法的名称。
  另一种选择,您可以使用-printcompilation 选项得到最后一个被编译的方法的编译信息。因为 jstat 命令有一个参数选项用来重复其操作,您可以观察每一次方法被编译的情况。举个例子:
  Jstat 对 6006 号 ID 进程每 1000 毫秒执行一次: %jstat –printcompilation 6006 1000,具体的输出信息在此不再描述。

32.3.6、高级编译器调优

  这一节我们将介绍编译工作剩下的细节,并且过程中我们会探讨一些额外的调优策略。调优的存在很大程度上帮助了 JVM 工程师诊断 JVM 自身的行为。如果您对编译器的工作原理很感兴趣,这一节您一定会喜欢。
  1)、编译线程
  从前文中我们知道,当一个方法(或循环)拥有编译资格时,它就会排队并等待编译。这个队列是由一个或很多个后台线程组成,这也就是说编译是一个异步的过程,它允许程序在代码正在编译时被继续执行。如果一个方法被标准编译方式所编译,那么下一个方法调用则会执行已编译的方法。如果一个循环被栈上替换方式所编译,那么下一次循环迭代则会执行新编译的代码。
  这些队列并不会严格的遵守先进先出原则:哪一个方法的调用计数器计数更高,哪一个就拥有优先权。所以即使当一个程序开始执行,并且有大量的代码需要编译,这个优先权顺序将帮助并保证最重要的代码被优先编译(这也是为什么编译 ID 在 PrintComilation 的输出结果中有时会失序的另一个原因)。
  当使用 client 编译器时,JVM 启动一个编译线程,而 server 编译器有两个这样的线程。当分层编译生效时,JVM 会基于某些复杂方程式默认启动多个 client 和 server 线程,涉及双日志在目标平台上的 CPU 数量。如下图所示:
  分层编译下 C1 和 C2 编译器线程默认数量:

  编译器线程的数量可以通过-XX:CICompilerCount=N flag 进行调节设置。这个数量是 JVM 将要执行队列所用的线程总数。对于分层编译,三分之一的(至少一个)线程被用于执行 client 编译器队列,剩下的(也是至少一个)被用来执行 server 编译器队列。
  在何时我们应该考虑调整这个值呢?如果一个程序被运行在单 CPU 机器上,那么只有一个编译线程会更好一些:因为对于某个线程来说,其对 CPU 的使用是有限的,并且在很多情况下越少的线程竞争资源会使其运行性能更高。然而,这个优势仅仅局限于初始预热阶段,之后,这些具有编译资格的方法并不会真的引起 CPU 争用。当一个股票批处理应用程序运行在单 CPU 机器上并且编译器线程被限制成只有一个,那么最初的计算过程将比一般情况下快 10%(因为它没有被其他线程进行 CPU 争用)。迭代运行的次数越多,最初的性能收益就相对越少,直到所有的热点方法被编译完性能收益也随之终止。


33、JVM逃逸分析

  逃逸分析(Escape Analysis)是目前Java虚拟机中比较前沿的优化技术。
  逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中,称为方法逃逸。例如:

public static StringBuffer craeteStringBuffer(String s1, String s2) {
    StringBuffer sb = new StringBuffer();
    sb.append(s1);
    sb.append(s2);
    return sb;
}

  StringBuffer sb是一个方法内部变量,上述代码中直接将sb返回,这样这个StringBuffer有可能被其他方法所改变,这样它的作用域就不只是在方法内部,虽然它是一个局部变量,称其逃逸到了方法外部。
  甚至还有可能被外部线程访问到,譬如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸。
  上述代码如果想要StringBuffer sb不逃出方法,可以这样写:return sb.toString();
  不直接返回 StringBuffer,那么StringBuffer将不会逃逸出方法。
  如果能证明一个对象不会逃逸到方法或线程外,则可能为这个变量进行一些高效的优化。

33.1、栈上分配

  我们都知道Java中的对象都是在堆上分配的,而垃圾回收机制会回收堆中不再使用的对象,但是筛选可回收对象,回收对象还有整理内存都需要消耗时间。如果能够通过逃逸分析确定某些对象不会逃出方法之外,那就可以让这个对象在栈上分配内存,这样该对象所占用的内存空间就可以随栈帧出栈而销毁,就减轻了垃圾回收的压力。
  在一般应用中,如果不会逃逸的局部对象所占的比例很大,如果能使用栈上分配,那大量的对象就会随着方法的结束而自动销毁了。

33.2、标量替换

  Java虚拟机中的原始数据类型(int,long等数值类型以及reference类型等)都不能再进一步分解,它们就可以称为标量。相对的,如果一个数据可以继续分解,那它称为聚合量,Java中最典型的聚合量是对象。如果逃逸分析证明一个对象不会被外部访问,并且这个对象是可分解的,那程序真正执行的时候将可能不创建这个对象,而改为直接创建它的若干个被这个方法使用到的成员变量来代替。拆散后的变量便可以被单独分析与优化,可以各自分别在栈帧或寄存器上分配空间,原本的对象就无需整体分配空间了。

33.3、总结

  虽然概念上的JVM总是在Java堆上为对象分配空间,但并不是说完全依照概念的描述去实现;只要最后实现处理的“可见效果”与概念中描述的一致就没问题了。所以说,“you can cheat as long as you don’t get caught”。Java对象在实际的JVM实现中可能在GC堆上分配空间,也可能在栈上分配空间,也可能完全就消失了。这种行为从Java源码中看不出来,也无法显式指定,只是聪明的JVM自动做的优化而已。
  但是逃逸分析会有时间消耗,所以性能未必提升多少,并且由于逃逸分析比较耗时,目前的实现都是采用不那么准确但是时间压力相对较小的算法来完成逃逸分析,这就可能导致效果不稳定,要慎用。

相关文章

网友评论

    本文标题:Java常见面试题汇总-----------JVM专题(JVM编

    本文链接:https://www.haomeiwen.com/subject/zswowqtx.html