美文网首页
一作解读|韩方普研究组在小麦着丝粒组成及其进化研究领域取得新进展

一作解读|韩方普研究组在小麦着丝粒组成及其进化研究领域取得新进展

作者: Neal_Bio | 来源:发表于2019-07-22 10:26 被阅读0次

         植物着丝粒是基因组中进化最剧烈、结构最复杂的区域,在物种形成和分化过程中发挥重要作用。大多数植物着丝粒结构复杂,主要是由高度重复的卫星DNA (satellite)以及中间穿插的反转座子序列 (CR) 组成,其中着丝粒satellite序列单元长度主要集中在150 – 180 bp之间,例如水稻CentO和玉米CentC序列,多年前已经发现并用于着丝粒结构与功能研究(Comai et al., 2017)。普通小麦是重要的粮食作物,经过两次远缘杂交和多倍化过程,是染色体组进化及多倍体二倍化研究的模式材料。然而普通小麦基因组巨大,90%以上的序列均是高度的重复序列,给小麦研究带来巨大的挑战(Marcussen et al., 2014)。前期对小麦着丝粒的研究基本局限于通过筛选着丝粒BAC等手段,获得某些着丝粒序列(Liu et al., 2008; Li et al., 2013)。对小麦着丝粒全面解析,包括小麦着丝粒DNA序列组成(尤其是功能性satellite序列)、结构以及其在基因组形成和进化过程中的动态变化及对多倍化适应的分子机制目前基本不清楚。

          韩方普研究组长期从事植物着丝粒的遗传和表观遗传学研究。前期在小麦非整倍体及其野生近缘种杂交后代观察到丰富的着丝粒变异现象,染色体重排诱导着丝粒序列减少、丢失、扩增、新着丝粒以及多着丝粒形成,不稳定的着丝粒可能造成染色体频繁的断裂和接合,暗示着丝粒在异源多倍体小麦物种形成过程潜在的功能(Guo et al., 2016)。近年来随着小麦参考基因组的逐渐公布,对小麦着丝粒进行全面的解析成为可能(Avni et al., 2017; Luo et al., 2017; (IWGSC), 2018; Ling et al., 2018),)。

    1. 我们利用之前发表的中国春小麦着丝粒表观标记CENH3抗体的ChIP数据,重新比对到最新的中国春参考基因组上,确定了小麦着丝粒大小及位置(图1A)。在小麦中发现两类着丝粒特异的串联重复序列,和CENH3核小体结合,分别在其二倍体供体B和D亚基因组着丝粒富集分布(图1B)。与二倍体供体着丝粒特异satellite序列的信号强度相比,在普通小麦中这些序列的拷贝数明显减少,FISH信号明显减弱,甚至在某些着丝粒上已经完全丢失satellite序列(图1B)。与传统着丝粒的串联重复序列单元大小150-180 bp不同,小麦着丝粒satellite序列单元大小超过500-bp,序列上包含多个特定的CENH3结合位点,表现出周期性CENH3结合特点(图1C)。

                 

    图1 小麦着丝粒串联重复序列在不同亚基因组之间的分布

    2. 随后系统进化树分析表明小麦着丝粒串联重复序列在不同亚基因组间发生分化(图2A),更同质的串联重复序列保持和CENH3核小体的结合(图2B),在小麦多倍化过程中,从二倍体到四倍体再到六倍体,着丝粒特异satellite序列在每个亚基因组上其遗传多样性明显增加(图2C)。最后比较不同倍性小麦着丝粒位置、基因共线性以及表达等情况发现,多倍化过程中小麦着丝粒结构发生重排,基因位置和表达水平发生变化,着丝粒串联重复序列发生局部扩增(图1B)。异源六倍体小麦着丝粒在不同亚基因组之间的不对称性可能参与小麦减数分裂过程同源染色体的配对,促使多倍体小麦的稳定传递。

                图2 小麦着丝粒特异satellite序列亚基因组不同区域序列相似度

      该论文于2019年7月16日在线发表于《The Plant Cell》上,题为“Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes”(doi.org/10.1105/tpc.19.00133),韩方普研究组已毕业博士研究生苏汉东和刘亚林为该文章的共同第一作者,韩方普研究员为通讯作者。该研究得到国家自然科学基金、国家重点研发计划等项目的资助。 

     

    参考文献

    Avni, R., Nave, M., et al., (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97.

    Comai, L., Maheshwari, S., and Marimuthu, M.P.A. (2017). Plant centromeres. Curr. Opin. Plant Biol. 36, 158-167.

    (IWGSC), I.W.G.S.C. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403).

    Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C., and Zhang, X. (2013). Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 73, 952-965.

    Ling, H.Q., Ma, B., et al., (2018). Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424-428.

    Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., International Wheat Genome Sequencing, C., Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F., and Olsen, O.A. (2014). Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092.

    Liu, Z., Yue, W., Li, D., Wang, R.R., Kong, X., Lu, K., Wang, G., Dong, Y., Jin, W., and Zhang, X. (2008). Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.

    Chromosoma 117, 445-456.

    Luo, M.C., Gu, Y.Q., et al., (2017). Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681):498-502.

    相关文章

      网友评论

          本文标题:一作解读|韩方普研究组在小麦着丝粒组成及其进化研究领域取得新进展

          本文链接:https://www.haomeiwen.com/subject/ztdilctx.html