美文网首页
最短路模板整理

最短路模板整理

作者: 染微言 | 来源:发表于2017-03-20 17:59 被阅读91次

    Dijkstra

    模板一(map数组模拟邻接表)

    处理小图速度相对较快。
    内存占用较小,对重边优化较差。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    
    using namespace std;
    const int INF = 0x3f3f3f3f;
    const int maxn = 1000;
    
    int map[maxn][maxn];
    int pre[maxn],dis[maxn];
    bool vis[maxn];
    int n,m;
    
    void Dijkstra(int s)
    {
        memset(dis,0x3f,sizeof(dis));
        memset(pre,-1,sizeof(pre));
        memset(vis,false,sizeof(vis));
        for(int i=1;i<=n;++i)
        {
            dis[i]=map[s][i];
            pre[i]=s;
        }
        dis[s]=0;
        vis[s]=true;
        for(int i=2;i<=n;++i)
        {
            int mindist=INF;
            int u=s;
            for(int j=1;j<=n;++j)
                if((!vis[j])&&dis[j]<mindist)
                {
                    u=j;
                    mindist=dis[j];
                }
            vis[u]=true;
            for(int j=1;j<=n;++j)
                if((!vis[j])&&map[u][j]<INF)
                {
                    if(map[u][j]+dis[u]<dis[j])
                    {
                        dis[j]=map[u][j]+dis[u];
                        pre[j]=u;
                    }
                }
        }
    }
    int main(){
        cin >> m >> n;
        for (int i=1; i <=n;i++)
            for (int j=1;j <=n;j++){
                if (i == j) map[i][j] = 0;
                else map[i][j] = map[j][i] = INF;
            }
        while (m--) {
            int start, end, len;
            cin >> start >> end >> len;
            map[start][end] = len;
            map[end][start] = len;
        }
        cout << map[2][5] << endl;
        Dijkstra(1);
        cout << dis[n] << endl;
        return 0;
    }
    

    模板二(链式前向星+优先队列优化)

    主要优化在重边。因为使用了STL所以占用内存和速度相对较慢。

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<queue>
    
    using namespace std;
    const int INF=0x3f3f3f3f;
    
    struct node
    {
        int d,u;
        friend bool operator<(node a,node b)
        {
            return a.d>b.d;
        }
        node(int dist,int point):d(dist),u(point){}
    };
    
    struct Edge
    {
        int to,next;
        int dist;
    }edge[maxm];
    int head[maxn],tot;
    int pre[maxn],dis[maxn];
    
    void init()
    {
        memset(head,-1,sizeof(head));
        tot=0;
    }
    
    void addedge(int u,int v,int d)
    {
        edge[tot].to=v;
        edge[tot].dist=d;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    
    void Dijkstra(int s)
    {
        priority_queue<node> q;
        memset(dis,0x3f,sizeof(dis));
        memset(pre,-1,sizeof(pre));
        dis[s]=0;
        while(!q.empty())
            q.pop();
        node a(0,s);
        q.push(a);       //起点入队列
        while(!q.empty())
        {
            node x=q.top();
            q.pop();
            if(dis[x.u]<x.d)   //最短路已找到
                continue;
            for(int i=head[x.u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].to;
                if(dis[v]>dis[x.u]+edge[i].dist)
                {
                    dis[v]=dis[x.u]+edge[i].dist;
                    pre[v]=x.u;
                    q.push(node(dis[v],v));
                }
            }
        }
    }
    

    模板三(结构体内置方法)

    因为使用了链式前向星所以不担心重边。
    其中还使用了快读方法,所以很快。

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    #include <utility>
    using namespace std;
    
    const int N = 1005;
    const int M = 1005;
    const int INF = 0x3f3f3f3f
    
    struct Graph{
        struct Edge{
            int v, w, next;
        }edge[M];
        int ehead[N];
        void init(){
            memset(ehead, -1, sizeof(ehead))
        }
        inline void addedge(int u, int v, int w){
            edge[ecnt] = {v, w, ehead[u]};
            ehead[u] = ecnt++;
        }
        int dist[N];
        bool vis[N];
        void Dijkstra(int s){
            memset(dist, INF, sizeof(dist));
            memset(vis, 0, sizeof(vis));
            priority_queue<pair<int, int> > q;
            q.push(make_pair(-(dist[s] = 0), s));
            while(q.size()){
                int u = q.top().second; q.pop();
                if (vis[u]) continue;
                vis[u] = true;
                for (int i = ehead[u]; ~i; i = edge[i].next){
                    int v = edge[i].v;
                    if (vis[v]) continue;
                    int ndist = dist[u] + edge[i].w;
                    if (ndist < dist[v]) q.push(make_pair(-(dist[v] = ndist), v));
                }
            }
        }
    }g1, g2;
    
    int Input(){
        char c;
        for (c = getchar(); c<'0' || c>'9'; c = getchar());
        int a = c - '0';
        for (c = getchar(); c >= '0' && c <= '9'; c = getchar())
            a = a*10 + c - '0';
        return a;
    }
    

    Floyd

    代码很短,时间复杂度很高(O(n^3))。

    void floyd(){
        for(int k=1; k<=n; ++k)
            for(int i=1; i<=n; ++i)
                for(int j=1; j<=n; ++j)
                    if (map[i][j] > map[i][k] + map[k][j]) //松弛
                        map[i][j] = map[i][k] + map[k][j];
    }
    

    Bellman-Ford

    模板一(链式前向星)

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    using namespace std;
    struct Edge{
        int u, v;
        double r, c;
    }edge[maxn*2];
    
    double mostMoney[maxn];
    int n, m, s;
    double v;
    int tot;
    
    void addedge(int u, int v, double r, double c){
        edge[tot].u = u;
        edge[tot].v = v;
        edge[tot].r = r;
        edge[tot++].c = c;
    }
    
    bool relax(int n){
        double temp = (mostMoney[edge[n].u] - edge[n].c)*edge[n].r;
        if (temp > mostMoney[edge[n].v]){
            mostMoney[edge[n].v] = temp;
            return true;
        }
        return false;
    }
    
    bool bellman_ford(){
        bool flag;
        for (int i=0; i<n; i++) mostMoney[i] = 0.0;
        mostMoney[s] = v;
        for (int i=0; i<n-1; ++i){
            flag = false;
            for (int j=0; j<tot; ++j)
                if (relax(j)) flag = true;
            if (mostMoney[s] > v) return true;
            if (!flag) return false;
        }
        for (int i=0; i<tot; ++i){
            if (relax(i)) return true;
        }
        return false;
    }
    

    模板二

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    using namespace std;
    
    const int INF=0x3f3f3f3f;
    struct Edge{
        int u,v; //起点、终点
        int dist; //长度
    }edge[maxn];
    
    int dis[maxn]; //最短距离数组
    int n, m; //结点数、边数
    
    bool Bellman_ford(int s){
        memset(dis, INF, sizeof(dis));
        dis[s]=0;
        for(int k=1; k<n; ++k){ //迭代n-1次
            for(int i=0; i<m; ++i){  //检查每条边
                int x = edge[i].u, y = edge[i].v;
                if(dis[x] < INF)
                    dis[y] = min(dis[y], dis[x] + edge[i].dist);
            }
        }
        bool flag=1;
      for(int i=0; i<m; ++i){   //判断是否有负环
            int x = edge[i].u, y = edge[i].v;
            if(d[y] > d[x] + edge[i].dist){
                flag = 0; break;
            }
        }
        return flag;
    }
    

    SPFA

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <queue>
    #define maxn 1000005
    using namespace std;
    const long long INF = 0xffffffff;
    
    int Input(){
        char c;
        for (c = getchar(); c<'0' || c>'9'; c = getchar());
        int a = c - '0';
        for (c = getchar(); c>='0' && c<='9'; c = getchar()) a = a * 10 + c - '0';
        return a;
    }
    
    int n, m;
    struct edge{
        int e, next, w;
    }edge[2][maxn];
    
    long long dis[maxn], ans;
    int head[2][maxn], vis[maxn];
    
    inline void spfa(int x){
        for (int i=1; i<=n; i++){
            dis[i] = 0xffffffff;
            //cout << dis[i] << endl;
        }
        memset(vis, 0, sizeof(vis));
        
        queue<int> q;
        int a, b;
        
        q.push(1);
        vis[1] = 1;
        dis[1] = 0;
        
        while(!q.empty()){
            a = q.front(); q.pop();
            vis[a] = 1;
            
            for (int i=head[x][a]; i != -1; i=edge[x][i].next){
                b = edge[x][i].e;
                if (dis[b] > dis[a] + edge[x][i].w){
                    dis[b] = dis[a] + edge[x][i].w;
                    if (!vis[b]) { q.push(b); vis[b] = 1; }
                }
            }
        }
    }
    

    相关文章

      网友评论

          本文标题:最短路模板整理

          本文链接:https://www.haomeiwen.com/subject/zwjinttx.html