高阶函数
-
map/reduce
map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
-
filter
filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。(True留下来)
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
- sorted
Python内置的sorted()函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:
list = [36, 5, -12, 9, -21]
keys = [36, 5, 12, 9, 21]
然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素:
keys排序结果 => [5, 9, 12, 21, 36]
| | | | |
最终结果 => [5, 9, -12, -21, 36]
我们再看一个字符串排序的例子:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']
返回函数
- python可以在函数里定义函数,并返回一个函数
- 返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量
匿名函数
- 匿名函数 lambda 必须是表达式而不是语句,且只能有一个表达式
装饰器
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
>>> def now():
... print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25
函数对象有一个__name__属性,可以拿到函数的名字:
>>> now.__name__
'now'
>>> f.__name__
'now'
现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2015-3-25')
调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:
>>> now()
call now():
2015-3-25
把@log放到now()函数的定义处,相当于执行了语句:
now = log(now)
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
这个3层嵌套的decorator用法如下:
@log('execute')
def now():
print('2015-3-25')
执行结果如下:
>>> now()
execute now():
2015-3-25
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有name等属性,但你去看经过decorator装饰之后的函数,它们的name已经从原来的'now'变成了'wrapper':
>>> now.__name__
'wrapper'
因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的name等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.name = func.name这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
或者针对带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可
网友评论