美文网首页Android Framework
基于Vivado HLS在zedboard中的Sobel滤波算法

基于Vivado HLS在zedboard中的Sobel滤波算法

作者: xiabodan | 来源:发表于2020-03-25 19:15 被阅读0次

平台:zedboard + Webcam
工具:g++4.6 + VIVADO HLS + XILINX EDK + XILINX SDK
系统:ubuntu12.04

总体设计思路

image

sobel 算法理论基础

** 索贝尔算子**(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。

image

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

image
Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1) 
  + (-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y) 
  + (-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)
  = [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]

Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)
   + 0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)
   + (-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)
   = [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]

其中f(a,b),表示图像(a,b)点的灰度值;

图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

image

通常,为了提高效率 使用不开平方的近似值:


image

如果梯度G大于某一阀值则认为该点(x,y)为边缘点

然后可用以下公式计算梯度方向:

image

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

流程

HLS算法验证与实现

算法验证包括算法C/C++实现,综合编译仿真,实现导出pcore用于------->XLINX EDK

EDK硬件 工程搭建

EDK中主要搭建zedboard硬件平台,实现VDMA(用AXI-Stream),HDMI,DDR等等,生成system.bit,用于连同uboot、fsbl生成zedboard bootload (BOOT.BIN)

参考:zedboard启动过程分析 , zedboard 构建嵌入式linux

LINUX系统移植

准备一张>8G的SD卡,分区为FAT32+EXT4(其中EXT4为文件系统>4GB,FAT分区为内核 设备树 bootloader) 可以采用gparted分区工具完成,apt-get install gparted
系统移植包括内核镜像的编译,bootloader的移植,设备树的编译,文件系统的移植
具体移植步骤参见
内核镜像地址:git clone http://github.com/Digilent/linux-3.3.digilent.git)
uboot源码: git clone git://git.xiinx.com/u-boot-xarm.git
设备树在内核中可以找到,将设备树,内核镜像,BOOT.BIN拷贝到SD卡中FAT分区中
文件系统 , 直接拷贝到SD卡中EXT4分区中

LINUX VDMA驱动应用程序编写与实现

编写驱动程序是为了我们能在PS中对VDMA进行管理和控制。前提是在底层中我们已经做好了所有相关的硬件设计等等。
移植OPENCV库:用于对比FPGA算法处理速度比较,有两种方法移植OPENCV库,
1: apt-get install libopencv-dev python-opencv
2: opencv下载源码地址
编译步骤参考:基于opencv网络摄像头在ubuntu下的视频获取

结果展示

FPGA硬件实现Sobel效果
OPENCV软件实现Sobel image

处理时间显示

结果分析

上图处理时间中 640*480的视频

1:opencv处理一帧的时间0.148554s 大约为7帧每秒

2:fpga硬件实现一帧总时间(算法时间+VDMA拷贝时间)

3:fpga硬件实现一帧的算法时间,不包含拷贝DMA时间

在cortex A9 700MHZ 速度中 ,FPGA实现的算法速度比OPENCV软件实现速度快50-100倍,FPGA一秒钟可以处理500帧图像,OPENCV只能处理10张不到

但是缺点是,视频拷贝花费了太多的时间。所以我个人认为FPGA处理图像不在算法实现有多复杂与困难,因为FPGA的并行率理论上是无穷的,但是视频流的输入输出的速度直接决定了处理速度。暂时没想到好的方法解决。

参考

使用HLS各种问题
Sobel边缘检测算法
shakithweblog博客

作者:xiabodan

相关文章

  • 基于Vivado HLS在zedboard中的Sobel滤波算法

    平台:zedboard + Webcam工具:g++4.6 + VIVADO HLS + XILINX ED...

  • 39. 边缘检测

    本文解释Canny和sobel边缘检测算法。 1)Canny算法实现 步骤: 读取灰度图 高斯滤波 Canny算法...

  • 硬件加速OpenCV的图像处理方法研究

    摘 要: 研究了一种基于Vivado HLS加速OpenCV程序的方法,其核心是利用Xilinx高层次综合工具Vi...

  • 滤波器

    傅里叶变换及高低通滤波器的分类(均值滤波,高斯滤波,sobel,scharr,拉普拉斯滤波器) - CSDN博客 ...

  • Scharr与Laplacian滤波器---OpenCV-Pyt

    Scharr滤波器 OpenCV还给我们提供了Scharr滤波器,该滤波器与Sobel滤波器具有同样的处理速度,且...

  • 2020掌握的技术2020-11-06

    技术:Matlab图像处理空间滤波(sobel,prewitte,log,laplace),图像降噪(统计排序,自...

  • 3.5 梯度

    OpenCv提供三种类型的梯度滤波器或高通滤波器,Sobel、Scharr和Laplacian。 一个好的选择

  • opencv图像梯度

    原理 梯度简单来说就是求导。OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr ...

  • Android基于Shader的图像处理(4)-Sobel边缘检

    完整代码位置:AndroidShaderDemo Sobel边界探测算法1、Sobel边界探测算法上面给了open...

  • Canny边缘检测

    边缘检测一般步骤 使用高斯滤波 在x和y方向上使用Sobel滤波器,在此之上求出边缘的强度和边缘的梯度 对梯度幅值...

网友评论

    本文标题:基于Vivado HLS在zedboard中的Sobel滤波算法

    本文链接:https://www.haomeiwen.com/subject/abwxuhtx.html