Android消息机制

作者: 墨白历险记 | 来源:发表于2018-11-13 11:21 被阅读8次

    Android的消息机制主要是指Handler的运行机制,通过Handler可以轻松的将一个任务切换到Handler所在的线程中执行.

    概述

    将Handler用于UI更新:

    有时候需要在子线程中进行耗时的IO操作,当耗时操作完成后可能需要在UI上做一下变化,因为Android开发规范限制,我们不能在子线程中访问UI控件,否则会出发程序异常(ANR 无响应),此时通过Handler就可以将更新UI的操作切换到主线程中执行.

    //Android在ViewRootImpl中进行UI操作验证.
     void checkThread() {
            if (mThread != Thread.currentThread()) {
                throw new CalledFromWrongThreadException(
                        "Only the original thread that created a view hierarchy can touch its views.");
            }
        }
    
    不允许在子线程更新UI操作的原因:

    Android的UI控件不是线程安全的,如果在多线程中并发访问可能会导致UI控件处于不可预期的状态.
    那么为什么系统不对UI控件的访问加上锁机制呢.其实有两点:

    • 加上锁机制会使得UI访问逻辑变得复杂
    • 锁机制会降低UI访问的效率,因为锁机制会阻塞某些线程执行.
    Handler的执行流程

    Handler创建完毕后,通过Handler的postXX()方法将一个Runnable传递到Handler的内部的Looper中去处理.

     public final boolean post(Runnable r){...}
     public final boolean postAtTime(Runnable r, long uptimeMillis){...}
     public final boolean postAtTime(Runnable r, Object token, long uptimeMillis){...}
     public final boolean postDelayed(Runnable r, long delayMillis){...}
     public final boolean postDelayed(Runnable r, Object token, long delayMillis){...}
     public final boolean postAtFrontOfQueue(Runnable r){...}
    

    也可以通过Handler的sendXX()方法发送一个消息,这个消息同样会在Looper中处理.

     public final boolean sendMessage(Message msg){...}
     public final boolean sendEmptyMessage(int what){...}
     public final boolean sendEmptyMessageDelayed(int what, long delayMillis){...}
     public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis){...}
     public final boolean sendMessageDelayed(Message msg, long delayMillis){...}
     public boolean sendMessageAtTime(Message msg, long uptimeMillis){...}
     public final boolean sendMessageAtFrontOfQueue(Message msg){...}
    

    在这个过程中,其实postXX()方法内部最后也是调用的sendXX()方法来完成的.因此我们就分析一下sendXX()方法的调用过程.

    当Handler的sendXX()方法被调用时,会执行enqueueMessage方法将这个消息放入队列中,然后Looper发现有新消息到来时,就会处理这个消息.

      //Handler中的
      private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
            msg.target = this;
            if (mAsynchronous) {
                msg.setAsynchronous(true);
            }
            return queue.enqueueMessage(msg, uptimeMillis);
        }
    //其内部调用的MessageQueue的enqueueMessage方法.
    

    此时,Handler中的业务逻辑就被切换到了创建Handler所在的线程中去执行了(因为Looper运行在创建Handler所在线程).

    分析

    ThreadLocal
    定义

    ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储后,只有在指定线程中可以获取到存储的数据.

    使用场景
    • 当某些数据是以线程为作用域,并且不同线程有不同的数据副本时,就可以使用ThreadLocal.
      比如对于Handler来说,需要获取当前线程的Looper,此时Looper的作用域就是线程,并且不同的线程拥有不同的Looper.
    • 复杂逻辑下的对象传递,比如监听器的传递.
      有些时候一个线程中的任务过于复杂(函数调用栈较深以及代码入口多样性),这种情况下,我们又需要监听器能够贯穿整个线程的执行过程.此时采用ThreadLocal可以让监听器作为线程内的全局对象而存在,在线程内部只要通过get方法就可以获得监听器.
    示例

    在不同的线程中使用同一个ThreadLocal对象:

    public class CustomActivity extends AppCompatActivity {
    
        private static final String TAG = "Sean";
    
        private ThreadLocal<Boolean> mThreadLocal = new ThreadLocal<>();
    
    
        @Override
        protected void onCreate(@Nullable Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            setContentView(R.layout.activity_custom);
    
    
            mThreadLocal.set(true);
            Log.d(TAG, "Thread[#main] mThreadLocal=" + mThreadLocal.get());
    
    
            new Thread("Thread[#1]"){
                @Override
                public void run() {
                    mThreadLocal.set(false);
                    Log.d(TAG, "Thread[#1] mThreadLocal=" + mThreadLocal.get());
                }
            }.start();
    
            new Thread("Thread[#2]"){
                @Override
                public void run() {
                    Log.d(TAG, "Thread[#2] mThreadLocal=" + mThreadLocal.get());
                }
            }.start();
    
        }
    }
    
    ...打印结果:
    2018-11-12 15:04:41.942 18529-18529/? D/Sean: Thread[#main] mThreadLocal=true
    2018-11-12 15:04:41.943 18529-18565/? D/Sean: Thread[#1] mThreadLocal=false
    2018-11-12 15:04:41.943 18529-18566/? D/Sean: Thread[#2] mThreadLocal=null
    

    可以很清楚的看见,虽然在不同的线程访问同一个ThreadLocal对象,但是获取到的值是不同的.

    ThreadLocal的存取机制

    我们从数据的存取着手开始分析,首先看保存函数set:

        public void set(T value) {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
        }
    

    首先拿到当前线程实例t,接着通过t获得ThreadLocalMap,我们看到是通过getMap方法获取到的ThreadLocalMap,继续看getMap方法的实现.

        ThreadLocalMap getMap(Thread t) {
            return t.threadLocals;
        }
    

    getMap方法中直接返回了Thread类中的threaLocals.

        ThreadLocal.ThreadLocalMap threadLocals = null;
    

    清楚了各个方法的实现后,我们来捋一捋:
    首先ThreadLocal的set方法中,拿到当前线程对象中的ThreadLocalMap对象的实例,其实就是Thread类中的theadLocals.然后将需要保存的值保存到threadLocals中.
    说的明显一点就是,每个线程中的ThreadLocal的副本都保存在当前线程Thread对象中,存储结构为ThreadLocalMap,键值的类型分别是当前ThreadLocal实例和传入的内容值.
    接下来给获取函数get:

        public T get() {
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null) {
                ThreadLocalMap.Entry e = map.getEntry(this);
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    T result = (T)e.value;
                    return result;
                }
            }
            return setInitialValue();
        }
    

    同理,拿到当前线程的对象实例中保存的ThreadLocalMap,然后读取当前ThreadLocal实例所对应的值.

        private T setInitialValue() {
            T value = initialValue();
            Thread t = Thread.currentThread();
            ThreadLocalMap map = getMap(t);
            if (map != null)
                map.set(this, value);
            else
                createMap(t, value);
            return value;
        }
    
        void createMap(Thread t, T firstValue) {
            t.threadLocals = new ThreadLocalMap(this, firstValue);
        }
    
    

    通过createMap来创建ThreadLocalMap对象实例,set函数中的ThreadLocalMap实例也是通过createMap生成的.
    到此ThreadLocal的存取机制工作流程已经介绍清楚了,并且后续会有文章来详细介绍ThreadLocalMap的存储结构.

    MessageQueue工作机制

    顾名思义,MessageQueue翻译成中文就是消息队列,它提供的主要两个操作是:插入和读取,对应的方法分别为enqueueMessage和next.
    虽然MessageQueue叫消息队列,但是它的内部实现是通过单链表结构来维护消息列表的.

    enqueueMessage

    作用:往消息队列中插入一条消息.

          boolean enqueueMessage(Message msg, long when) {
            if (msg.target == null) {
                throw new IllegalArgumentException("Message must have a target.");
            }
            if (msg.isInUse()) {
                throw new IllegalStateException(msg + " This message is already in use.");
            }
    
            synchronized (this) {
                if (mQuitting) {
                    IllegalStateException e = new IllegalStateException(
                            msg.target + " sending message to a Handler on a dead thread");
                    Log.w(TAG, e.getMessage(), e);
                    msg.recycle();
                    return false;
                }
    
                msg.markInUse();
                msg.when = when;
                Message p = mMessages;
                boolean needWake;
                if (p == null || when == 0 || when < p.when) {
                    // New head, wake up the event queue if blocked.
                    msg.next = p;
                    mMessages = msg;
                    needWake = mBlocked;
                } else {
                    // Inserted within the middle of the queue.  Usually we don't have to wake
                    // up the event queue unless there is a barrier at the head of the queue
                    // and the message is the earliest asynchronous message in the queue.
                    needWake = mBlocked && p.target == null && msg.isAsynchronous();
                    Message prev;
                    for (;;) {
                        prev = p;
                        p = p.next;
                        if (p == null || when < p.when) {
                            break;
                        }
                        if (needWake && p.isAsynchronous()) {
                            needWake = false;
                        }
                    }
                    msg.next = p; // invariant: p == prev.next
                    prev.next = msg;
                }
    
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                    nativeWake(mPtr);
                }
            }
            return true;
        }
    

    enqueueMessage中主要是进行了单链表的插入操作.

    next

    作用:从消息队列中读取一条消息并将其从消息队列中移除.

        Message next() {
            // Return here if the message loop has already quit and been disposed.
            // This can happen if the application tries to restart a looper after quit
            // which is not supported.
            final long ptr = mPtr;
            if (ptr == 0) {
                return null;
            }
    
            int pendingIdleHandlerCount = -1; // -1 only during first iteration
            int nextPollTimeoutMillis = 0;
            for (;;) {
                if (nextPollTimeoutMillis != 0) {
                    Binder.flushPendingCommands();
                }
    
                nativePollOnce(ptr, nextPollTimeoutMillis);
    
                synchronized (this) {
                    // Try to retrieve the next message.  Return if found.
                    final long now = SystemClock.uptimeMillis();
                    Message prevMsg = null;
                    Message msg = mMessages;
                    if (msg != null && msg.target == null) {
                        // Stalled by a barrier.  Find the next asynchronous message in the queue.
                        do {
                            prevMsg = msg;
                            msg = msg.next;
                        } while (msg != null && !msg.isAsynchronous());
                    }
                    if (msg != null) {
                        if (now < msg.when) {
                            // Next message is not ready.  Set a timeout to wake up when it is ready.
                            nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                        } else {
                            // Got a message.
                            mBlocked = false;
                            if (prevMsg != null) {
                                prevMsg.next = msg.next;
                            } else {
                                mMessages = msg.next;
                            }
                            msg.next = null;
                            if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                            msg.markInUse();
                            return msg;
                        }
                    } else {
                        // No more messages.
                        nextPollTimeoutMillis = -1;
                    }
    
                    // Process the quit message now that all pending messages have been handled.
                    if (mQuitting) {
                        dispose();
                        return null;
                    }
    
                    // If first time idle, then get the number of idlers to run.
                    // Idle handles only run if the queue is empty or if the first message
                    // in the queue (possibly a barrier) is due to be handled in the future.
                    if (pendingIdleHandlerCount < 0
                            && (mMessages == null || now < mMessages.when)) {
                        pendingIdleHandlerCount = mIdleHandlers.size();
                    }
                    if (pendingIdleHandlerCount <= 0) {
                        // No idle handlers to run.  Loop and wait some more.
                        mBlocked = true;
                        continue;
                    }
    
                    if (mPendingIdleHandlers == null) {
                        mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                    }
                    mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
                }
    
                // Run the idle handlers.
                // We only ever reach this code block during the first iteration.
                for (int i = 0; i < pendingIdleHandlerCount; i++) {
                    final IdleHandler idler = mPendingIdleHandlers[i];
                    mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                    boolean keep = false;
                    try {
                        keep = idler.queueIdle();
                    } catch (Throwable t) {
                        Log.wtf(TAG, "IdleHandler threw exception", t);
                    }
    
                    if (!keep) {
                        synchronized (this) {
                            mIdleHandlers.remove(idler);
                        }
                    }
                }
    
                // Reset the idle handler count to 0 so we do not run them again.
                pendingIdleHandlerCount = 0;
    
                // While calling an idle handler, a new message could have been delivered
                // so go back and look again for a pending message without waiting.
                nextPollTimeoutMillis = 0;
            }
        }
    

    next是一个无线循环方法,如果消息队列中没有消息,那么next会一直堵塞在这里. 当有新消息到来时,next方法会返回这条消息并从单链表中移除.

    Looper的工作原理

    Looper在Android的消息机制中扮演者消息循环的角色,它会不停的从MessageQueue中查看是否有新消息,如果有新消息就立刻处理,否则一直阻塞在那里.
    我们先看一下Looper的构造方法,在构造方法中它会创建一个MessageQueue消息队列,然后将当前线程的对象保存起来.

          private Looper(boolean quitAllowed) {
            mQueue = new MessageQueue(quitAllowed);
            mThread = Thread.currentThread();
        }
    

    Handler的工作需要Looper,没有Looper线程就会报错,那么如果为一个线程创建Looper呢?

        /** Initialize the current thread as a looper.
          * This gives you a chance to create handlers that then reference
          * this looper, before actually starting the loop. Be sure to call
          * {@link #loop()} after calling this method, and end it by calling
          * {@link #quit()}.
          */
        public static void prepare() {
            prepare(true);
        }
    
        private static void prepare(boolean quitAllowed) {
            if (sThreadLocal.get() != null) {
                throw new RuntimeException("Only one Looper may be created per thread");
            }
            sThreadLocal.set(new Looper(quitAllowed));
        }
    

    接着调用Looper.loop()方法来开启消息循环.开始循环调用MessageQueue的next()方法查询新消息.

              final Looper me = myLooper();
            if (me == null) {
                throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
            }
            final MessageQueue queue = me.mQueue;
    
            // Make sure the identity of this thread is that of the local process,
            // and keep track of what that identity token actually is.
            Binder.clearCallingIdentity();
            final long ident = Binder.clearCallingIdentity();
    
            // Allow overriding a threshold with a system prop. e.g.
            // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
            final int thresholdOverride =
                    SystemProperties.getInt("log.looper."
                            + Process.myUid() + "."
                            + Thread.currentThread().getName()
                            + ".slow", 0);
    
            boolean slowDeliveryDetected = false;
    
            for (;;) {
                Message msg = queue.next(); // might block
                if (msg == null) {
                    // No message indicates that the message queue is quitting.
                    return;
                }
    
                // This must be in a local variable, in case a UI event sets the logger
                final Printer logging = me.mLogging;
                if (logging != null) {
                    logging.println(">>>>> Dispatching to " + msg.target + " " +
                            msg.callback + ": " + msg.what);
                }
    
                final long traceTag = me.mTraceTag;
                long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
                long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
                if (thresholdOverride > 0) {
                    slowDispatchThresholdMs = thresholdOverride;
                    slowDeliveryThresholdMs = thresholdOverride;
                }
                final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
                final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
    
                final boolean needStartTime = logSlowDelivery || logSlowDispatch;
                final boolean needEndTime = logSlowDispatch;
    
                if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                    Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
                }
    
                final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
                final long dispatchEnd;
                try {
                    msg.target.dispatchMessage(msg);
                    dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
                } finally {
                    if (traceTag != 0) {
                        Trace.traceEnd(traceTag);
                    }
                }
                if (logSlowDelivery) {
                    if (slowDeliveryDetected) {
                        if ((dispatchStart - msg.when) <= 10) {
                            Slog.w(TAG, "Drained");
                            slowDeliveryDetected = false;
                        }
                    } else {
                        if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                                msg)) {
                            // Once we write a slow delivery log, suppress until the queue drains.
                            slowDeliveryDetected = true;
                        }
                    }
                }
                if (logSlowDispatch) {
                    showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
                }
    
                if (logging != null) {
                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
                }
    
                // Make sure that during the course of dispatching the
                // identity of the thread wasn't corrupted.
                final long newIdent = Binder.clearCallingIdentity();
                if (ident != newIdent) {
                    Log.wtf(TAG, "Thread identity changed from 0x"
                            + Long.toHexString(ident) + " to 0x"
                            + Long.toHexString(newIdent) + " while dispatching to "
                            + msg.target.getClass().getName() + " "
                            + msg.callback + " what=" + msg.what);
                }
    
                msg.recycleUnchecked();
            }
    

    loop()方法是一个死循环,唯一跳出循环的方式是MessageQueue的next()方法返回了null.

    Looper提供了quit和quitSafely来退出一个Looper.
    两者的区别是:quit会直接退出Looper,而quitSafely只是设定一个退出标记,然后把消息队列中的已有消息处理完毕后才安全的退出.
    Looper退出后,通过Handler发送消息会失败,并且此时调用send()方法会返回false.
    当我们在子线程中手动创建了Looper,那么当所有任务执行完毕后应该调用quit方法来终止消息循环,否则这个子线程会一直处于等待的状态.
    当调用Looper的quit或quitSafely方法后会执行MessageQueue的quit方法,此时MessageQueue的next方法就会返回null.也就是说,Looper必须退出,否则loop()方法就会无限循环下去.
    如果MessageQueue的next()方法返回了消息,Looper就会处理这条消息.

    Handler的工作原理

    Handler的主要工作包含发送和接收消息的过程.
    Handler发送时向消息队列中插入一条消息,MessageQueue的next()方法会将这条消息返给Looper,Looper收到消息后开始处理,最终交给Handler再进行处理.此时Handler的dispathMessage方法会被调用.

        public void dispatchMessage(Message msg) {
            if (msg.callback != null) {
                handleCallback(msg);
            } else {
                if (mCallback != null) {
                    if (mCallback.handleMessage(msg)) {
                        return;
                    }
                }
                handleMessage(msg);
            }
        }
    

    首先检查Message的callback是否为null,不为null则通过handleCallBack来处理消息.
    Message的callback是一个runnable对象.实际上就是Handler的post方法所传递的Runnable参数.

        private static void handleCallback(Message message) {
            message.callback.run();
        }
    

    当Message的callback为null时则检查mCallback是否为null,不为null则调用handleMessage方法来处理消息.

    文章只是自己学习过程中的总结,写的不好请指正,谢谢.

    相关文章

      网友评论

        本文标题:Android消息机制

        本文链接:https://www.haomeiwen.com/subject/acbqfqtx.html