基础算法
一、排序
冒泡排序
//冒泡排序
function bubbleSort(arr) {
for(var i = 1, len = arr.length; i < len - 1; ++i) {
for(var j = 0; j <= len - i; ++j) {
if (arr[j] > arr[j + 1]) {
let temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
插入排序
//插入排序 过程就像你拿到一副扑克牌然后对它排序一样
function insertionSort(arr) {
var n = arr.length;
// 我们认为arr[0]已经被排序,所以i从1开始
for (var i = 1; i < n; i++) {
// 取出下一个新元素,在已排序的元素序列中从后向前扫描来与该新元素比较大小
for (var j = i - 1; j >= 0; j--) {
if (arr[i] >= arr[j]) { // 若要从大到小排序,则将该行改为if (arr[i] <= arr[j])即可
// 如果新元素arr[i] 大于等于 已排序的元素序列的arr[j],
// 则将arr[i]插入到arr[j]的下一位置,保持序列从小到大的顺序
arr.splice(j + 1, 0, arr.splice(i, 1)[0]);
// 由于序列是从小到大并从后向前扫描的,所以不必再比较下标小于j的值比arr[j]小的值,退出循环
break;
} else if (j === 0) {
// arr[j]比已排序序列的元素都要小,将它插入到序列最前面
arr.splice(j, 0, arr.splice(i, 1)[0]);
}
}
}
return arr;
}
当目标是升序排序,最好情况是序列本来已经是升序排序,那么只需比较n-1次,时间复杂度O(n)。最坏情况是序列本来是降序排序,那么需比较n(n-1)/2次,时间复杂度O(n2)。所以平均来说,插入排序的时间复杂度是O(n2)。显然,次方级别的时间复杂度代表着插入排序不适合数据特别多的情况,一般来说插入排序适合小数据量的排序。
快速排序
//快速排序
function qSort(arr) {
//声明并初始化左边的数组和右边的数组
var left = [], right = [];
//使用数组第一个元素作为基准值
var base = arr[0];
//当数组长度只有1或者为空时,直接返回数组,不需要排序
if(arr.length <= 1) return arr;
//进行遍历
for(var i = 1, len = arr.length; i < len; i++) {
if(arr[i] <= base) {
//如果小于基准值,push到左边的数组
left.push(arr[i]);
} else {
//如果大于基准值,push到右边的数组
right.push(arr[i]);
}
}
//递归并且合并数组元素
return [...qSort(left), ...[base], ...qSort(right)]; //return qSort(left).concat([base], qSort(right));
}
二、字符串
回文字符串
//判断回文字符串
function palindrome(str) {
var reg = /[\W\_]/g;
var str0 = str.toLowerCase().replace(reg, "");
var str1 = str0.split("").reverse().join("");
return str0 === str1;
}
翻转字符串
function reverseString(str) {
return str.split("").reverse().join("");
}
字符串中出现最多次数的字符
function findMaxDuplicateChar(str) {
var cnt = {}, //用来记录所有的字符的出现频次
c = ''; //用来记录最大频次的字符
for (var i = 0; i < str.length; i++) {
var ci = str[i];
if (!cnt[ci]) {
cnt[ci] = 1;
} else {
cnt[ci]++;
}
if (c == '' || cnt[ci] > cnt[c]) {
c = ci;
}
}
console.log(cnt)
return c;
}
三、数组
数组去重
//数组去重
function uniqueArray(arr) {
var temp = [];
for (var i = 0; i < arr.length; i++) {
if (temp.indexOf(arr[i]) == -1) {
temp.push(arr[i]);
}
}
return temp;
//or
return Array.from(new Set(arr));
}
四、查找
二分查找
//二分查找
function binary_search(arr, l, r, v) {
if (l > r) {
return -1;
}
var m = parseInt((l + r) / 2);
if (arr[m] == v) {
return m;
} else if (arr[m] < v) {
return binary_search(arr, m+1, r, v);
} else {
return binary_search(arr, l, m-1, v);
}
}
将二分查找运用到之前的插入排序中,形成二分插入排序,据说可以提高效率。但我测试的时候也许是数据量太少,并没有发现太明显的差距。。大家可以自己试验一下~(譬如在函数调用开始和结束使用console.time('插入排序耗时')和console.timeEnd('插入排序耗时'))
五、树的搜索/遍历
深度优先搜索
//深搜 非递归实现
function dfs(node) {
var nodeList = [];
if (node) {
var stack = [];
stack.push(node);
while(stack.length != 0) {
var item = stack.pop();
nodeList.push(item);
var children = item.children;
for (var i = children.length-1; i >= 0; i--) {
stack.push(children[i]);
}
}
}
return nodeList;
}
//深搜 递归实现
function dfs(node, nodeList) {
if (node) {
nodeList.push(node);
var children = node.children;
for (var i = 0; i < children.length; i++) {
dfs(children[i], nodeList);
}
}
return nodeList;
}
广度优先搜索
//广搜 非递归实现
function bfs(node) {
var nodeList = [];
if (node != null) {
var queue = [];
queue.unshift(node);
while (queue.length != 0) {
var item = queue.shift();
nodeList.push(item);
var children = item.children;
for (var i = 0; i < children.length; i++)
queue.push(children[i]);
}
}
return nodeList;
}
//广搜 递归实现
var i=0; //自增标识符
function bfs(node, nodeList) {
if (node) {
nodeList.push(node);
if (nodeList.length > 1) {
bfs(node.nextElementSibling, nodeList); //搜索当前元素的下一个兄弟元素
}
node = nodeList[i++];
bfs(node.firstElementChild, nodeList); //该层元素节点遍历完了,去找下一层的节点遍历
}
return nodeList;
}
高阶函数衍生算法
1.filter去重
filter也是一个常用的操作,它用于把Array的某些元素过滤掉,然后返回剩下的元素。也可以这么理解,filter的回调函数把Array的每个元素都处理一遍,处理结果返回false则过滤结果去除该元素,true则留下来
用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。
其实这个筛选函数有多个参数,filter(function (element, index, self),演示一个使用filter去重,像这样:
var r,
arr = ['apple', 'strawberry', 'banana', 'pear', 'apple', 'orange', 'orange', 'strawberry'];
r = arr.filter(function (element, index, self) {
return self.indexOf(element) === index;
//拿到元素,判断他在数组里第一次出现的位置,是不是和当前位置一样,一样的话返回true,不一样说明重复了,返回false。
});
2.sort排序算法
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个对象呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。通常规定,对于两个元素x和y,如果认为x < y,则返回-1,如果认为x == y,则返回0,如果认为x > y,则返回1,这样,排序算法就不用关心具体的比较过程,而是根据比较结果直接排序。
值得注意的例子
// 看上去正常的结果:
['Google', 'Apple', 'Microsoft'].sort(); // ['Apple', 'Google', 'Microsoft'];
// apple排在了最后:
['Google', 'apple', 'Microsoft'].sort(); // ['Google', 'Microsoft", 'apple']
// 无法理解的结果:
[10, 20, 1, 2].sort(); // [1, 10, 2, 20]
解释原因
第二个排序把apple排在了最后,是因为字符串根据ASCII码进行排序,而小写字母a的ASCII码在大写字母之后。
第三个排序结果,简单的数字排序都能错。
这是因为Array的sort()方法默认把所有元素先转换为String再排序,结果’10’排在了’2’的前面,因为字符’1’比字符’2’的ASCII码小。
因此我们把结合这个原理:
var arr = [10, 20, 1, 2];
arr.sort(function (x, y) {
if (x < y) {
return -1;
}
if (x > y) {
return 1;
}
return 0;
});
console.log(arr); // [1, 2, 10, 20]
上面的代码解读一下:传入x,y,如果x<y,返回-1,x与前面排,如果x>y,返回-1,x后面排,如果x=y,无所谓谁拍谁前面。
还有一个,sort()方法会直接对Array进行修改,它返回的结果仍是当前Array,一个栗子:
var a1 = ['B', 'A', 'C'];
var a2 = a1.sort();
a1; // ['A', 'B', 'C']
a2; // ['A', 'B', 'C']
a1 === a2; // true, a1和a2是同一对象
最后,给大家推荐一个前端学习进阶内推交流群685910553(前端资料分享),不管你在地球哪个方位,
不管你参加工作几年都欢迎你的入驻!(群内会定期免费提供一些群主收藏的免费学习书籍资料以及整理好的面试题和答案文档!)
如果您对这个文章有任何异议,那么请在文章评论处写上你的评论。
如果您觉得这个文章有意思,那么请分享并转发,或者也可以关注一下表示您对我们文章的认可与鼓励。
愿大家都能在编程这条路,越走越远。
网友评论