美文网首页
比特币源码分析系列4---交易transaction(1)

比特币源码分析系列4---交易transaction(1)

作者: JC86 | 来源:发表于2018-09-03 09:26 被阅读0次

    未花费的交易输出(UTXO)

    大家都有转过账,每笔交易是这样的:张三账上减¥200,李四账上加¥200。 在比特币区块链中,交易不是这么简单,交易实际是通过脚本来完成,以承载更多的功能个,这也是为什么比特币被称为是一种“可编程的货币”。
    先引入一个概念:未花费的交易输出——UTXO(Unspent Transaction Output)
    比特币的交易都是基于UTXO上的,即交易的输入是之前交易未花费的输出,这笔交易的输出可以被当做下一笔新交易的输入。
    挖矿奖励属于一个特殊的交易(称为coinbase交易),可以没有输入。 UTXO是交易的基本单元,不能再分割。 在比特币没有余额概念,只有分散到区块链里的UTXO
    随着钱从一个地址被移动到另一个地址的同时形成了一条所有权链,像这样:

    资产转移
    再看Transaction的结构图:
    image.png

    Transaction代码

    src/trimitives/transaction.h

    // Copyright (c) 2009-2010 Satoshi Nakamoto
    // Copyright (c) 2009-2017 The Bitcoin Core developers
    // Distributed under the MIT software license, see the accompanying
    // file COPYING or http://www.opensource.org/licenses/mit-license.php.
    
    #ifndef BITCOIN_PRIMITIVES_TRANSACTION_H
    #define BITCOIN_PRIMITIVES_TRANSACTION_H
    
    #include <stdint.h>
    #include <amount.h>
    #include <script/script.h>
    #include <serialize.h>
    #include <uint256.h>
    
    static const int SERIALIZE_TRANSACTION_NO_WITNESS = 0x40000000;
    
    /** An outpoint - a combination of a transaction hash and an index n into its vout 
    * COutPoint主要用在交易的输入CTxIn中,用来确定当前输出的来源,
    * 包括前一笔交易的hash,以及对应前一笔交易中的第几个输出的序列号。
    */
    class COutPoint
    {
    public:
        uint256 hash;           //交易哈希
        uint32_t n;                //对应序列号,对应哪笔交易 
    
        COutPoint(): n((uint32_t) -1) { }
        COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }
    
        ADD_SERIALIZE_METHODS;  //用来序列化数据结构,方便存储和传输
    
        template <typename Stream, typename Operation>
        inline void SerializationOp(Stream& s, Operation ser_action) {
            READWRITE(hash);
            READWRITE(n);
        }
    
        void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
        bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
        //小于号<重载函数
        friend bool operator<(const COutPoint& a, const COutPoint& b)
        {
            int cmp = a.hash.Compare(b.hash);
            return cmp < 0 || (cmp == 0 && a.n < b.n);
        }
        //==重载函数
        friend bool operator==(const COutPoint& a, const COutPoint& b)
        {
            return (a.hash == b.hash && a.n == b.n);
        }
        //!=重载函数
        friend bool operator!=(const COutPoint& a, const COutPoint& b)
        {
            return !(a == b);
        }
    
        std::string ToString() const;
    };
    
    /** An input of a transaction.  It contains the location of the previous
     * transaction's output that it claims and a signature that matches the
     * output's public key.
     * 交易的输入,包括当前输入对应前一笔交易的输出的位置,以及花费前一笔输出需要的签名脚本
     * CScriptWitness是用来支持隔离见证时使用的。
     */
    class CTxIn
    {
    public:
        COutPoint prevout;  //上一笔交易输出位置
        CScript scriptSig;     //解锁脚本
        uint32_t nSequence;/**序列号,可用于交易的锁定 
                                nSequence字段的设计初心是想让交易能在在内存中修改,可惜后面从未运用过
                                对于具有nLocktime或CHECKLOCKTIMEVERIFY的交易,
                                nSequence值必须设置为小于2^32,以使时间锁定器有效。通常设置为2^32-1
                                由于BIP-68的激活,新的共识规则适用于任何包含nSequence值小于2^31的输入的交易(bit 1<<31 is not set)。
                                以编程方式,这意味着如果没有设置最高有效(bit 1<<31),它是一个表示“相对锁定时间”的标志。
                                否则(bit 1<<31set),nSequence值被保留用于其他用途,
                                例如启用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其他未来的新产品。
                                一笔输入交易,当输入脚本中的nSequence值小于2^31时,就是相对时间锁定的输入交易。
                                这种交易只有到了相对锁定时间后才生效。例如,
                                具有30个区块的nSequence相对时间锁的一个输入的交易
                                只有在从输入中引用的UTXO开始的时间起至少有30个块时才有效。
                                由于nSequence是每个输入字段,因此交易可能包含任何数量的时间锁定输入,
                                所有这些都必须具有足够的时间以使交易有效。
                                */
        CScriptWitness scriptWitness; //! Only serialized through CTransaction
    
        /* Setting nSequence to this value for every input in a transaction
         * disables nLockTime. 
         * 规则1:如果一笔交易中所有的SEQUENCE_FINAL都被赋值了相应的nSequence,那么nLockTime就会被禁用
         */
    
        static const uint32_t SEQUENCE_FINAL = 0xffffffff;
    
        /* Below flags apply in the context of BIP 68*/
        /* If this flag set, CTxIn::nSequence is NOT interpreted as a
         * relative lock-time. 
         * 规则2:如果设置了该值,nSequence不被用于相对时间锁定。规则1失效
         */
        static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
    
        /* If CTxIn::nSequence encodes a relative lock-time and this flag
         * is set, the relative lock-time has units of 512 seconds,
         * otherwise it specifies blocks with a granularity of 1. 
         * 规则3:如果规则1有效并且设置了此变量,那么相对锁定时间单位为512秒,否则锁定时间就为1个区块
         */
        static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
    
        /* If CTxIn::nSequence encodes a relative lock-time, this mask is
         * applied to extract that lock-time from the sequence field. 
         * 规则4:如果nSequence用于相对时间锁,即规则1有效,那么这个变量就用来从nSequence计算对应的锁定时间
         */
        static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
    
        /* In order to use the same number of bits to encode roughly the
         * same wall-clock duration, and because blocks are naturally
         * limited to occur every 600s on average, the minimum granularity
         * for time-based relative lock-time is fixed at 512 seconds.
         * Converting from CTxIn::nSequence to seconds is performed by
         * multiplying by 512 = 2^9, or equivalently shifting up by
         * 9 bits. 
         * 相对时间锁粒度
         * 为了使用相同的位数来粗略地编码相同的挂钟时间,
         * 因为区块的产生限制于每600s产生一个,
         * 相对时间锁定的最小单位为512是,512 = 2^9
         * 所以相对时间锁定的时间转化为相当于当前值左移9位
         */
        static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
    
        CTxIn()
        {
            nSequence = SEQUENCE_FINAL;
        }
    
        explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
        CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
    
        ADD_SERIALIZE_METHODS;
    
        template <typename Stream, typename Operation>
        inline void SerializationOp(Stream& s, Operation ser_action) {
            READWRITE(prevout);
            READWRITE(scriptSig);
            READWRITE(nSequence);
        }
    
        friend bool operator==(const CTxIn& a, const CTxIn& b)
        {
            return (a.prevout   == b.prevout &&
                    a.scriptSig == b.scriptSig &&
                    a.nSequence == b.nSequence);
        }
    
        friend bool operator!=(const CTxIn& a, const CTxIn& b)
        {
            return !(a == b);
        }
    
        std::string ToString() const;
    };
    
    /** An output of a transaction.  It contains the public key that the next input
     * must be able to sign with to claim it.
     * 交易输出,包含输出金额和锁定脚本
     */
    class CTxOut
    {
    public:
        CAmount nValue;        //输出金额
        CScript scriptPubKey; //锁定脚本
    
        CTxOut()
        {
            SetNull();
        }
    
        CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
    
        ADD_SERIALIZE_METHODS;
    
        template <typename Stream, typename Operation>
        inline void SerializationOp(Stream& s, Operation ser_action) {
            READWRITE(nValue);
            READWRITE(scriptPubKey);
        }
    
        void SetNull()    //设置为空
        {
            nValue = -1;
            scriptPubKey.clear();
        }
    
        bool IsNull() const    //检查是否为空
        {
            return (nValue == -1);
        }
    
        friend bool operator==(const CTxOut& a, const CTxOut& b)
        {
            return (a.nValue       == b.nValue &&
                    a.scriptPubKey == b.scriptPubKey);
        }
    
        friend bool operator!=(const CTxOut& a, const CTxOut& b)
        {
            return !(a == b);
        }
    
        std::string ToString() const;
    };
    
    struct CMutableTransaction;
    
    /**
     * Basic transaction serialization format:
     * - int32_t nVersion
     * - std::vector<CTxIn> vin
     * - std::vector<CTxOut> vout
     * - uint32_t nLockTime
     *
     * Extended transaction serialization format:
     * - int32_t nVersion
     * - unsigned char dummy = 0x00
     * - unsigned char flags (!= 0)
     * - std::vector<CTxIn> vin
     * - std::vector<CTxOut> vout
     * - if (flags & 1):
     *   - CTxWitness wit;
     * - uint32_t nLockTime
     */
    template<typename Stream, typename TxType>
    inline void UnserializeTransaction(TxType& tx, Stream& s) {
        const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);
    
        s >> tx.nVersion;
        unsigned char flags = 0;
        tx.vin.clear();
        tx.vout.clear();
        /* Try to read the vin. In case the dummy is there, this will be read as an empty vector. */
        s >> tx.vin;
        if (tx.vin.size() == 0 && fAllowWitness) {
            /* We read a dummy or an empty vin. */
            s >> flags;
            if (flags != 0) {
                s >> tx.vin;
                s >> tx.vout;
            }
        } else {
            /* We read a non-empty vin. Assume a normal vout follows. */
            s >> tx.vout;
        }
        if ((flags & 1) && fAllowWitness) {
            /* The witness flag is present, and we support witnesses. */
            flags ^= 1;
            for (size_t i = 0; i < tx.vin.size(); i++) {
                s >> tx.vin[i].scriptWitness.stack;
            }
        }
        if (flags) {
            /* Unknown flag in the serialization */
            throw std::ios_base::failure("Unknown transaction optional data");
        }
        s >> tx.nLockTime;
    }
    
    template<typename Stream, typename TxType>
    inline void SerializeTransaction(const TxType& tx, Stream& s) {
        const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);
    
        s << tx.nVersion;
        unsigned char flags = 0;
        // Consistency check
        if (fAllowWitness) {
            /* Check whether witnesses need to be serialized. */
            if (tx.HasWitness()) {
                flags |= 1;
            }
        }
        if (flags) {
            /* Use extended format in case witnesses are to be serialized. */
            std::vector<CTxIn> vinDummy;
            s << vinDummy;
            s << flags;
        }
        s << tx.vin;
        s << tx.vout;
        if (flags & 1) {
            for (size_t i = 0; i < tx.vin.size(); i++) {
                s << tx.vin[i].scriptWitness.stack;
            }
        }
        s << tx.nLockTime;
    }
    
    
    /** The basic transaction that is broadcasted on the network and contained in
     * blocks.  A transaction can contain multiple inputs and outputs.
     * 下面就是在网络中广播然后被打包进区块的最基本的交易的结构,一个交易可能包含多个交易输入和输出。
     */
    class CTransaction
    {
    public:
        // Default transaction version.默认交易版本
        static const int32_t CURRENT_VERSION=2;
    
        // Changing the default transaction version requires a two step process: first
        // adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
        // bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
        // MAX_STANDARD_VERSION will be equal.
        /** 更改默认交易版本需要两个步骤:
        *   1.首先通过碰撞MAX_STANDARD_VERSION来调整中继策略,
        *   2.然后在稍后的日期碰撞默认的CURRENT_VERSION 
        *   最终MAX_STANDARD_VERSION和CURRENT_VERSION会一致
        */
        static const int32_t MAX_STANDARD_VERSION=2;
    
        // The local variables are made const to prevent unintended modification
        // without updating the cached hash value. However, CTransaction is not
        // actually immutable; deserialization and assignment are implemented,
        // and bypass the constness. This is safe, as they update the entire
        // structure, including the hash.
        /** 下面这些变量都被定义为常量类型,从而避免无意识的修改了交易而没有更新缓存的hash值;
        *   然而CTransaction不是可变的
        *   反序列化和分配被执行的时候会绕过常量
        *   这才是安全的,因为更新整个结构包括哈希值
        */
        const std::vector<CTxIn> vin;       //交易输入
        const std::vector<CTxOut> vout;  //交易输出
        const int32_t nVersion;                 //版本
        const uint32_t nLockTime;           //锁定时间 
    
    private:
        /** Memory only. */
        const uint256 hash;
    
        uint256 ComputeHash() const;
    
    public:
        /** Construct a CTransaction that qualifies as IsNull() */
        CTransaction();
    
        /** Convert a CMutableTransaction into a CTransaction. */
        /**可变交易转换为交易*/
        CTransaction(const CMutableTransaction &tx);
        CTransaction(CMutableTransaction &&tx);
    
        template <typename Stream>
        inline void Serialize(Stream& s) const {
            SerializeTransaction(*this, s);
        }
    
        /** This deserializing constructor is provided instead of an Unserialize method.
         *  Unserialize is not possible, since it would require overwriting const fields. 
         ** 提供此反序列化构造函数而不是Unserialize方法。
         *  反序列化是不可能的,因为它需要覆盖const字段
        */
        template <typename Stream>
        CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}
    
        bool IsNull() const {
            return vin.empty() && vout.empty();
        }
    
        const uint256& GetHash() const {
            return hash;
        }
    
        // Compute a hash that includes both transaction and witness data
        uint256 GetWitnessHash() const;  //计算包含交易和witness数据的散列 
    
        // Return sum of txouts.
        CAmount GetValueOut() const;  //返回交易出书金额总和    
        // GetValueIn() is a method on CCoinsViewCache, because
        // inputs must be known to compute value in.
    
        /**
         * Get the total transaction size in bytes, including witness data.
         * "Total Size" defined in BIP141 and BIP144.
         * @return Total transaction size in bytes
         */
        unsigned int GetTotalSize() const;   // 返回交易大小
    
        bool IsCoinBase() const     //判断是否是创币交易
        {
            return (vin.size() == 1 && vin[0].prevout.IsNull());
        }
    
        friend bool operator==(const CTransaction& a, const CTransaction& b)
        {
            return a.hash == b.hash;
        }
    
        friend bool operator!=(const CTransaction& a, const CTransaction& b)
        {
            return a.hash != b.hash;
        }
    
        std::string ToString() const;
    
        bool HasWitness() const
        {
            for (size_t i = 0; i < vin.size(); i++) {
                if (!vin[i].scriptWitness.IsNull()) {
                    return true;
                }
            }
            return false;
        }
    };
    
    /** A mutable version of CTransaction. */
    //可变交易类,内容和CTransaction差不多。只是交易可以直接修改,广播中传播和打包到区块的交易都是CTransaction类型。
    struct CMutableTransaction
    {
        std::vector<CTxIn> vin;
        std::vector<CTxOut> vout;
        int32_t nVersion;
        uint32_t nLockTime;
    
        CMutableTransaction();
        CMutableTransaction(const CTransaction& tx);
    
        template <typename Stream>
        inline void Serialize(Stream& s) const {
            SerializeTransaction(*this, s);
        }
    
    
        template <typename Stream>
        inline void Unserialize(Stream& s) {
            UnserializeTransaction(*this, s);
        }
    
        template <typename Stream>
        CMutableTransaction(deserialize_type, Stream& s) {
            Unserialize(s);
        }
    
        /** Compute the hash of this CMutableTransaction. This is computed on the
         * fly, as opposed to GetHash() in CTransaction, which uses a cached result.
         */
        uint256 GetHash() const;
    
        friend bool operator==(const CMutableTransaction& a, const CMutableTransaction& b)
        {
            return a.GetHash() == b.GetHash();
        }
    
        bool HasWitness() const
        {
            for (size_t i = 0; i < vin.size(); i++) {
                if (!vin[i].scriptWitness.IsNull()) {
                    return true;
                }
            }
            return false;
        }
    };
    
    typedef std::shared_ptr<const CTransaction> CTransactionRef;
    static inline CTransactionRef MakeTransactionRef() { return std::make_shared<const CTransaction>(); }
    template <typename Tx> static inline CTransactionRef MakeTransactionRef(Tx&& txIn) { return std::make_shared<const CTransaction>(std::forward<Tx>(txIn)); }
    
    #endif // BITCOIN_PRIMITIVES_TRANSACTION_H
    

    类图

    一个交易包CTransaction包括n个输入CTxIn和n个输出,每个输入指向前一笔交易的hash和对应交易中的第几笔交易,也就是找到自己前面一笔还没花费的输出,代码整成类图如下图:


    CTx&CTxIn&CTout类图

    参考:
    https://juejin.im/post/5afa5c2951882567105fe47e
    https://blog.csdn.net/TuxedoLinux/article/details/80360863
    https://zhuanlan.zhihu.com/p/33227933
    https://juejin.im/post/5ae0738bf265da0b851c88ff

    相关文章

      网友评论

          本文标题:比特币源码分析系列4---交易transaction(1)

          本文链接:https://www.haomeiwen.com/subject/aejgiftx.html