美文网首页
比特币源码分析系列4---交易transaction(1)

比特币源码分析系列4---交易transaction(1)

作者: JC86 | 来源:发表于2018-09-03 09:26 被阅读0次

未花费的交易输出(UTXO)

大家都有转过账,每笔交易是这样的:张三账上减¥200,李四账上加¥200。 在比特币区块链中,交易不是这么简单,交易实际是通过脚本来完成,以承载更多的功能个,这也是为什么比特币被称为是一种“可编程的货币”。
先引入一个概念:未花费的交易输出——UTXO(Unspent Transaction Output)
比特币的交易都是基于UTXO上的,即交易的输入是之前交易未花费的输出,这笔交易的输出可以被当做下一笔新交易的输入。
挖矿奖励属于一个特殊的交易(称为coinbase交易),可以没有输入。 UTXO是交易的基本单元,不能再分割。 在比特币没有余额概念,只有分散到区块链里的UTXO
随着钱从一个地址被移动到另一个地址的同时形成了一条所有权链,像这样:

资产转移
再看Transaction的结构图:
image.png

Transaction代码

src/trimitives/transaction.h

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_PRIMITIVES_TRANSACTION_H
#define BITCOIN_PRIMITIVES_TRANSACTION_H

#include <stdint.h>
#include <amount.h>
#include <script/script.h>
#include <serialize.h>
#include <uint256.h>

static const int SERIALIZE_TRANSACTION_NO_WITNESS = 0x40000000;

/** An outpoint - a combination of a transaction hash and an index n into its vout 
* COutPoint主要用在交易的输入CTxIn中,用来确定当前输出的来源,
* 包括前一笔交易的hash,以及对应前一笔交易中的第几个输出的序列号。
*/
class COutPoint
{
public:
    uint256 hash;           //交易哈希
    uint32_t n;                //对应序列号,对应哪笔交易 

    COutPoint(): n((uint32_t) -1) { }
    COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }

    ADD_SERIALIZE_METHODS;  //用来序列化数据结构,方便存储和传输

    template <typename Stream, typename Operation>
    inline void SerializationOp(Stream& s, Operation ser_action) {
        READWRITE(hash);
        READWRITE(n);
    }

    void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
    bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
    //小于号<重载函数
    friend bool operator<(const COutPoint& a, const COutPoint& b)
    {
        int cmp = a.hash.Compare(b.hash);
        return cmp < 0 || (cmp == 0 && a.n < b.n);
    }
    //==重载函数
    friend bool operator==(const COutPoint& a, const COutPoint& b)
    {
        return (a.hash == b.hash && a.n == b.n);
    }
    //!=重载函数
    friend bool operator!=(const COutPoint& a, const COutPoint& b)
    {
        return !(a == b);
    }

    std::string ToString() const;
};

/** An input of a transaction.  It contains the location of the previous
 * transaction's output that it claims and a signature that matches the
 * output's public key.
 * 交易的输入,包括当前输入对应前一笔交易的输出的位置,以及花费前一笔输出需要的签名脚本
 * CScriptWitness是用来支持隔离见证时使用的。
 */
class CTxIn
{
public:
    COutPoint prevout;  //上一笔交易输出位置
    CScript scriptSig;     //解锁脚本
    uint32_t nSequence;/**序列号,可用于交易的锁定 
                            nSequence字段的设计初心是想让交易能在在内存中修改,可惜后面从未运用过
                            对于具有nLocktime或CHECKLOCKTIMEVERIFY的交易,
                            nSequence值必须设置为小于2^32,以使时间锁定器有效。通常设置为2^32-1
                            由于BIP-68的激活,新的共识规则适用于任何包含nSequence值小于2^31的输入的交易(bit 1<<31 is not set)。
                            以编程方式,这意味着如果没有设置最高有效(bit 1<<31),它是一个表示“相对锁定时间”的标志。
                            否则(bit 1<<31set),nSequence值被保留用于其他用途,
                            例如启用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其他未来的新产品。
                            一笔输入交易,当输入脚本中的nSequence值小于2^31时,就是相对时间锁定的输入交易。
                            这种交易只有到了相对锁定时间后才生效。例如,
                            具有30个区块的nSequence相对时间锁的一个输入的交易
                            只有在从输入中引用的UTXO开始的时间起至少有30个块时才有效。
                            由于nSequence是每个输入字段,因此交易可能包含任何数量的时间锁定输入,
                            所有这些都必须具有足够的时间以使交易有效。
                            */
    CScriptWitness scriptWitness; //! Only serialized through CTransaction

    /* Setting nSequence to this value for every input in a transaction
     * disables nLockTime. 
     * 规则1:如果一笔交易中所有的SEQUENCE_FINAL都被赋值了相应的nSequence,那么nLockTime就会被禁用
     */

    static const uint32_t SEQUENCE_FINAL = 0xffffffff;

    /* Below flags apply in the context of BIP 68*/
    /* If this flag set, CTxIn::nSequence is NOT interpreted as a
     * relative lock-time. 
     * 规则2:如果设置了该值,nSequence不被用于相对时间锁定。规则1失效
     */
    static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);

    /* If CTxIn::nSequence encodes a relative lock-time and this flag
     * is set, the relative lock-time has units of 512 seconds,
     * otherwise it specifies blocks with a granularity of 1. 
     * 规则3:如果规则1有效并且设置了此变量,那么相对锁定时间单位为512秒,否则锁定时间就为1个区块
     */
    static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);

    /* If CTxIn::nSequence encodes a relative lock-time, this mask is
     * applied to extract that lock-time from the sequence field. 
     * 规则4:如果nSequence用于相对时间锁,即规则1有效,那么这个变量就用来从nSequence计算对应的锁定时间
     */
    static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;

    /* In order to use the same number of bits to encode roughly the
     * same wall-clock duration, and because blocks are naturally
     * limited to occur every 600s on average, the minimum granularity
     * for time-based relative lock-time is fixed at 512 seconds.
     * Converting from CTxIn::nSequence to seconds is performed by
     * multiplying by 512 = 2^9, or equivalently shifting up by
     * 9 bits. 
     * 相对时间锁粒度
     * 为了使用相同的位数来粗略地编码相同的挂钟时间,
     * 因为区块的产生限制于每600s产生一个,
     * 相对时间锁定的最小单位为512是,512 = 2^9
     * 所以相对时间锁定的时间转化为相当于当前值左移9位
     */
    static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;

    CTxIn()
    {
        nSequence = SEQUENCE_FINAL;
    }

    explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
    CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);

    ADD_SERIALIZE_METHODS;

    template <typename Stream, typename Operation>
    inline void SerializationOp(Stream& s, Operation ser_action) {
        READWRITE(prevout);
        READWRITE(scriptSig);
        READWRITE(nSequence);
    }

    friend bool operator==(const CTxIn& a, const CTxIn& b)
    {
        return (a.prevout   == b.prevout &&
                a.scriptSig == b.scriptSig &&
                a.nSequence == b.nSequence);
    }

    friend bool operator!=(const CTxIn& a, const CTxIn& b)
    {
        return !(a == b);
    }

    std::string ToString() const;
};

/** An output of a transaction.  It contains the public key that the next input
 * must be able to sign with to claim it.
 * 交易输出,包含输出金额和锁定脚本
 */
class CTxOut
{
public:
    CAmount nValue;        //输出金额
    CScript scriptPubKey; //锁定脚本

    CTxOut()
    {
        SetNull();
    }

    CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);

    ADD_SERIALIZE_METHODS;

    template <typename Stream, typename Operation>
    inline void SerializationOp(Stream& s, Operation ser_action) {
        READWRITE(nValue);
        READWRITE(scriptPubKey);
    }

    void SetNull()    //设置为空
    {
        nValue = -1;
        scriptPubKey.clear();
    }

    bool IsNull() const    //检查是否为空
    {
        return (nValue == -1);
    }

    friend bool operator==(const CTxOut& a, const CTxOut& b)
    {
        return (a.nValue       == b.nValue &&
                a.scriptPubKey == b.scriptPubKey);
    }

    friend bool operator!=(const CTxOut& a, const CTxOut& b)
    {
        return !(a == b);
    }

    std::string ToString() const;
};

struct CMutableTransaction;

/**
 * Basic transaction serialization format:
 * - int32_t nVersion
 * - std::vector<CTxIn> vin
 * - std::vector<CTxOut> vout
 * - uint32_t nLockTime
 *
 * Extended transaction serialization format:
 * - int32_t nVersion
 * - unsigned char dummy = 0x00
 * - unsigned char flags (!= 0)
 * - std::vector<CTxIn> vin
 * - std::vector<CTxOut> vout
 * - if (flags & 1):
 *   - CTxWitness wit;
 * - uint32_t nLockTime
 */
template<typename Stream, typename TxType>
inline void UnserializeTransaction(TxType& tx, Stream& s) {
    const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);

    s >> tx.nVersion;
    unsigned char flags = 0;
    tx.vin.clear();
    tx.vout.clear();
    /* Try to read the vin. In case the dummy is there, this will be read as an empty vector. */
    s >> tx.vin;
    if (tx.vin.size() == 0 && fAllowWitness) {
        /* We read a dummy or an empty vin. */
        s >> flags;
        if (flags != 0) {
            s >> tx.vin;
            s >> tx.vout;
        }
    } else {
        /* We read a non-empty vin. Assume a normal vout follows. */
        s >> tx.vout;
    }
    if ((flags & 1) && fAllowWitness) {
        /* The witness flag is present, and we support witnesses. */
        flags ^= 1;
        for (size_t i = 0; i < tx.vin.size(); i++) {
            s >> tx.vin[i].scriptWitness.stack;
        }
    }
    if (flags) {
        /* Unknown flag in the serialization */
        throw std::ios_base::failure("Unknown transaction optional data");
    }
    s >> tx.nLockTime;
}

template<typename Stream, typename TxType>
inline void SerializeTransaction(const TxType& tx, Stream& s) {
    const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);

    s << tx.nVersion;
    unsigned char flags = 0;
    // Consistency check
    if (fAllowWitness) {
        /* Check whether witnesses need to be serialized. */
        if (tx.HasWitness()) {
            flags |= 1;
        }
    }
    if (flags) {
        /* Use extended format in case witnesses are to be serialized. */
        std::vector<CTxIn> vinDummy;
        s << vinDummy;
        s << flags;
    }
    s << tx.vin;
    s << tx.vout;
    if (flags & 1) {
        for (size_t i = 0; i < tx.vin.size(); i++) {
            s << tx.vin[i].scriptWitness.stack;
        }
    }
    s << tx.nLockTime;
}


/** The basic transaction that is broadcasted on the network and contained in
 * blocks.  A transaction can contain multiple inputs and outputs.
 * 下面就是在网络中广播然后被打包进区块的最基本的交易的结构,一个交易可能包含多个交易输入和输出。
 */
class CTransaction
{
public:
    // Default transaction version.默认交易版本
    static const int32_t CURRENT_VERSION=2;

    // Changing the default transaction version requires a two step process: first
    // adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
    // bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
    // MAX_STANDARD_VERSION will be equal.
    /** 更改默认交易版本需要两个步骤:
    *   1.首先通过碰撞MAX_STANDARD_VERSION来调整中继策略,
    *   2.然后在稍后的日期碰撞默认的CURRENT_VERSION 
    *   最终MAX_STANDARD_VERSION和CURRENT_VERSION会一致
    */
    static const int32_t MAX_STANDARD_VERSION=2;

    // The local variables are made const to prevent unintended modification
    // without updating the cached hash value. However, CTransaction is not
    // actually immutable; deserialization and assignment are implemented,
    // and bypass the constness. This is safe, as they update the entire
    // structure, including the hash.
    /** 下面这些变量都被定义为常量类型,从而避免无意识的修改了交易而没有更新缓存的hash值;
    *   然而CTransaction不是可变的
    *   反序列化和分配被执行的时候会绕过常量
    *   这才是安全的,因为更新整个结构包括哈希值
    */
    const std::vector<CTxIn> vin;       //交易输入
    const std::vector<CTxOut> vout;  //交易输出
    const int32_t nVersion;                 //版本
    const uint32_t nLockTime;           //锁定时间 

private:
    /** Memory only. */
    const uint256 hash;

    uint256 ComputeHash() const;

public:
    /** Construct a CTransaction that qualifies as IsNull() */
    CTransaction();

    /** Convert a CMutableTransaction into a CTransaction. */
    /**可变交易转换为交易*/
    CTransaction(const CMutableTransaction &tx);
    CTransaction(CMutableTransaction &&tx);

    template <typename Stream>
    inline void Serialize(Stream& s) const {
        SerializeTransaction(*this, s);
    }

    /** This deserializing constructor is provided instead of an Unserialize method.
     *  Unserialize is not possible, since it would require overwriting const fields. 
     ** 提供此反序列化构造函数而不是Unserialize方法。
     *  反序列化是不可能的,因为它需要覆盖const字段
    */
    template <typename Stream>
    CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}

    bool IsNull() const {
        return vin.empty() && vout.empty();
    }

    const uint256& GetHash() const {
        return hash;
    }

    // Compute a hash that includes both transaction and witness data
    uint256 GetWitnessHash() const;  //计算包含交易和witness数据的散列 

    // Return sum of txouts.
    CAmount GetValueOut() const;  //返回交易出书金额总和    
    // GetValueIn() is a method on CCoinsViewCache, because
    // inputs must be known to compute value in.

    /**
     * Get the total transaction size in bytes, including witness data.
     * "Total Size" defined in BIP141 and BIP144.
     * @return Total transaction size in bytes
     */
    unsigned int GetTotalSize() const;   // 返回交易大小

    bool IsCoinBase() const     //判断是否是创币交易
    {
        return (vin.size() == 1 && vin[0].prevout.IsNull());
    }

    friend bool operator==(const CTransaction& a, const CTransaction& b)
    {
        return a.hash == b.hash;
    }

    friend bool operator!=(const CTransaction& a, const CTransaction& b)
    {
        return a.hash != b.hash;
    }

    std::string ToString() const;

    bool HasWitness() const
    {
        for (size_t i = 0; i < vin.size(); i++) {
            if (!vin[i].scriptWitness.IsNull()) {
                return true;
            }
        }
        return false;
    }
};

/** A mutable version of CTransaction. */
//可变交易类,内容和CTransaction差不多。只是交易可以直接修改,广播中传播和打包到区块的交易都是CTransaction类型。
struct CMutableTransaction
{
    std::vector<CTxIn> vin;
    std::vector<CTxOut> vout;
    int32_t nVersion;
    uint32_t nLockTime;

    CMutableTransaction();
    CMutableTransaction(const CTransaction& tx);

    template <typename Stream>
    inline void Serialize(Stream& s) const {
        SerializeTransaction(*this, s);
    }


    template <typename Stream>
    inline void Unserialize(Stream& s) {
        UnserializeTransaction(*this, s);
    }

    template <typename Stream>
    CMutableTransaction(deserialize_type, Stream& s) {
        Unserialize(s);
    }

    /** Compute the hash of this CMutableTransaction. This is computed on the
     * fly, as opposed to GetHash() in CTransaction, which uses a cached result.
     */
    uint256 GetHash() const;

    friend bool operator==(const CMutableTransaction& a, const CMutableTransaction& b)
    {
        return a.GetHash() == b.GetHash();
    }

    bool HasWitness() const
    {
        for (size_t i = 0; i < vin.size(); i++) {
            if (!vin[i].scriptWitness.IsNull()) {
                return true;
            }
        }
        return false;
    }
};

typedef std::shared_ptr<const CTransaction> CTransactionRef;
static inline CTransactionRef MakeTransactionRef() { return std::make_shared<const CTransaction>(); }
template <typename Tx> static inline CTransactionRef MakeTransactionRef(Tx&& txIn) { return std::make_shared<const CTransaction>(std::forward<Tx>(txIn)); }

#endif // BITCOIN_PRIMITIVES_TRANSACTION_H

类图

一个交易包CTransaction包括n个输入CTxIn和n个输出,每个输入指向前一笔交易的hash和对应交易中的第几笔交易,也就是找到自己前面一笔还没花费的输出,代码整成类图如下图:


CTx&CTxIn&CTout类图

参考:
https://juejin.im/post/5afa5c2951882567105fe47e
https://blog.csdn.net/TuxedoLinux/article/details/80360863
https://zhuanlan.zhihu.com/p/33227933
https://juejin.im/post/5ae0738bf265da0b851c88ff

相关文章

网友评论

      本文标题:比特币源码分析系列4---交易transaction(1)

      本文链接:https://www.haomeiwen.com/subject/aejgiftx.html