未花费的交易输出(UTXO)
大家都有转过账,每笔交易是这样的:张三账上减¥200,李四账上加¥200。 在比特币区块链中,交易不是这么简单,交易实际是通过脚本来完成,以承载更多的功能个,这也是为什么比特币被称为是一种“可编程的货币”。
先引入一个概念:未花费的交易输出——UTXO(Unspent Transaction Output)
比特币的交易都是基于UTXO上的,即交易的输入是之前交易未花费的输出,这笔交易的输出可以被当做下一笔新交易的输入。
挖矿奖励属于一个特殊的交易(称为coinbase交易),可以没有输入。 UTXO是交易的基本单元,不能再分割。 在比特币没有余额概念,只有分散到区块链里的UTXO
随着钱从一个地址被移动到另一个地址的同时形成了一条所有权链,像这样:
再看Transaction的结构图:
image.png
Transaction代码
src/trimitives/transaction.h
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PRIMITIVES_TRANSACTION_H
#define BITCOIN_PRIMITIVES_TRANSACTION_H
#include <stdint.h>
#include <amount.h>
#include <script/script.h>
#include <serialize.h>
#include <uint256.h>
static const int SERIALIZE_TRANSACTION_NO_WITNESS = 0x40000000;
/** An outpoint - a combination of a transaction hash and an index n into its vout
* COutPoint主要用在交易的输入CTxIn中,用来确定当前输出的来源,
* 包括前一笔交易的hash,以及对应前一笔交易中的第几个输出的序列号。
*/
class COutPoint
{
public:
uint256 hash; //交易哈希
uint32_t n; //对应序列号,对应哪笔交易
COutPoint(): n((uint32_t) -1) { }
COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }
ADD_SERIALIZE_METHODS; //用来序列化数据结构,方便存储和传输
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(hash);
READWRITE(n);
}
void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
//小于号<重载函数
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
int cmp = a.hash.Compare(b.hash);
return cmp < 0 || (cmp == 0 && a.n < b.n);
}
//==重载函数
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
//!=重载函数
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const;
};
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
* 交易的输入,包括当前输入对应前一笔交易的输出的位置,以及花费前一笔输出需要的签名脚本
* CScriptWitness是用来支持隔离见证时使用的。
*/
class CTxIn
{
public:
COutPoint prevout; //上一笔交易输出位置
CScript scriptSig; //解锁脚本
uint32_t nSequence;/**序列号,可用于交易的锁定
nSequence字段的设计初心是想让交易能在在内存中修改,可惜后面从未运用过
对于具有nLocktime或CHECKLOCKTIMEVERIFY的交易,
nSequence值必须设置为小于2^32,以使时间锁定器有效。通常设置为2^32-1
由于BIP-68的激活,新的共识规则适用于任何包含nSequence值小于2^31的输入的交易(bit 1<<31 is not set)。
以编程方式,这意味着如果没有设置最高有效(bit 1<<31),它是一个表示“相对锁定时间”的标志。
否则(bit 1<<31set),nSequence值被保留用于其他用途,
例如启用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其他未来的新产品。
一笔输入交易,当输入脚本中的nSequence值小于2^31时,就是相对时间锁定的输入交易。
这种交易只有到了相对锁定时间后才生效。例如,
具有30个区块的nSequence相对时间锁的一个输入的交易
只有在从输入中引用的UTXO开始的时间起至少有30个块时才有效。
由于nSequence是每个输入字段,因此交易可能包含任何数量的时间锁定输入,
所有这些都必须具有足够的时间以使交易有效。
*/
CScriptWitness scriptWitness; //! Only serialized through CTransaction
/* Setting nSequence to this value for every input in a transaction
* disables nLockTime.
* 规则1:如果一笔交易中所有的SEQUENCE_FINAL都被赋值了相应的nSequence,那么nLockTime就会被禁用
*/
static const uint32_t SEQUENCE_FINAL = 0xffffffff;
/* Below flags apply in the context of BIP 68*/
/* If this flag set, CTxIn::nSequence is NOT interpreted as a
* relative lock-time.
* 规则2:如果设置了该值,nSequence不被用于相对时间锁定。规则1失效
*/
static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
/* If CTxIn::nSequence encodes a relative lock-time and this flag
* is set, the relative lock-time has units of 512 seconds,
* otherwise it specifies blocks with a granularity of 1.
* 规则3:如果规则1有效并且设置了此变量,那么相对锁定时间单位为512秒,否则锁定时间就为1个区块
*/
static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
/* If CTxIn::nSequence encodes a relative lock-time, this mask is
* applied to extract that lock-time from the sequence field.
* 规则4:如果nSequence用于相对时间锁,即规则1有效,那么这个变量就用来从nSequence计算对应的锁定时间
*/
static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
/* In order to use the same number of bits to encode roughly the
* same wall-clock duration, and because blocks are naturally
* limited to occur every 600s on average, the minimum granularity
* for time-based relative lock-time is fixed at 512 seconds.
* Converting from CTxIn::nSequence to seconds is performed by
* multiplying by 512 = 2^9, or equivalently shifting up by
* 9 bits.
* 相对时间锁粒度
* 为了使用相同的位数来粗略地编码相同的挂钟时间,
* 因为区块的产生限制于每600s产生一个,
* 相对时间锁定的最小单位为512是,512 = 2^9
* 所以相对时间锁定的时间转化为相当于当前值左移9位
*/
static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
CTxIn()
{
nSequence = SEQUENCE_FINAL;
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const;
};
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
* 交易输出,包含输出金额和锁定脚本
*/
class CTxOut
{
public:
CAmount nValue; //输出金额
CScript scriptPubKey; //锁定脚本
CTxOut()
{
SetNull();
}
CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(nValue);
READWRITE(scriptPubKey);
}
void SetNull() //设置为空
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const //检查是否为空
{
return (nValue == -1);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const;
};
struct CMutableTransaction;
/**
* Basic transaction serialization format:
* - int32_t nVersion
* - std::vector<CTxIn> vin
* - std::vector<CTxOut> vout
* - uint32_t nLockTime
*
* Extended transaction serialization format:
* - int32_t nVersion
* - unsigned char dummy = 0x00
* - unsigned char flags (!= 0)
* - std::vector<CTxIn> vin
* - std::vector<CTxOut> vout
* - if (flags & 1):
* - CTxWitness wit;
* - uint32_t nLockTime
*/
template<typename Stream, typename TxType>
inline void UnserializeTransaction(TxType& tx, Stream& s) {
const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);
s >> tx.nVersion;
unsigned char flags = 0;
tx.vin.clear();
tx.vout.clear();
/* Try to read the vin. In case the dummy is there, this will be read as an empty vector. */
s >> tx.vin;
if (tx.vin.size() == 0 && fAllowWitness) {
/* We read a dummy or an empty vin. */
s >> flags;
if (flags != 0) {
s >> tx.vin;
s >> tx.vout;
}
} else {
/* We read a non-empty vin. Assume a normal vout follows. */
s >> tx.vout;
}
if ((flags & 1) && fAllowWitness) {
/* The witness flag is present, and we support witnesses. */
flags ^= 1;
for (size_t i = 0; i < tx.vin.size(); i++) {
s >> tx.vin[i].scriptWitness.stack;
}
}
if (flags) {
/* Unknown flag in the serialization */
throw std::ios_base::failure("Unknown transaction optional data");
}
s >> tx.nLockTime;
}
template<typename Stream, typename TxType>
inline void SerializeTransaction(const TxType& tx, Stream& s) {
const bool fAllowWitness = !(s.GetVersion() & SERIALIZE_TRANSACTION_NO_WITNESS);
s << tx.nVersion;
unsigned char flags = 0;
// Consistency check
if (fAllowWitness) {
/* Check whether witnesses need to be serialized. */
if (tx.HasWitness()) {
flags |= 1;
}
}
if (flags) {
/* Use extended format in case witnesses are to be serialized. */
std::vector<CTxIn> vinDummy;
s << vinDummy;
s << flags;
}
s << tx.vin;
s << tx.vout;
if (flags & 1) {
for (size_t i = 0; i < tx.vin.size(); i++) {
s << tx.vin[i].scriptWitness.stack;
}
}
s << tx.nLockTime;
}
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
* 下面就是在网络中广播然后被打包进区块的最基本的交易的结构,一个交易可能包含多个交易输入和输出。
*/
class CTransaction
{
public:
// Default transaction version.默认交易版本
static const int32_t CURRENT_VERSION=2;
// Changing the default transaction version requires a two step process: first
// adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
// bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
// MAX_STANDARD_VERSION will be equal.
/** 更改默认交易版本需要两个步骤:
* 1.首先通过碰撞MAX_STANDARD_VERSION来调整中继策略,
* 2.然后在稍后的日期碰撞默认的CURRENT_VERSION
* 最终MAX_STANDARD_VERSION和CURRENT_VERSION会一致
*/
static const int32_t MAX_STANDARD_VERSION=2;
// The local variables are made const to prevent unintended modification
// without updating the cached hash value. However, CTransaction is not
// actually immutable; deserialization and assignment are implemented,
// and bypass the constness. This is safe, as they update the entire
// structure, including the hash.
/** 下面这些变量都被定义为常量类型,从而避免无意识的修改了交易而没有更新缓存的hash值;
* 然而CTransaction不是可变的
* 反序列化和分配被执行的时候会绕过常量
* 这才是安全的,因为更新整个结构包括哈希值
*/
const std::vector<CTxIn> vin; //交易输入
const std::vector<CTxOut> vout; //交易输出
const int32_t nVersion; //版本
const uint32_t nLockTime; //锁定时间
private:
/** Memory only. */
const uint256 hash;
uint256 ComputeHash() const;
public:
/** Construct a CTransaction that qualifies as IsNull() */
CTransaction();
/** Convert a CMutableTransaction into a CTransaction. */
/**可变交易转换为交易*/
CTransaction(const CMutableTransaction &tx);
CTransaction(CMutableTransaction &&tx);
template <typename Stream>
inline void Serialize(Stream& s) const {
SerializeTransaction(*this, s);
}
/** This deserializing constructor is provided instead of an Unserialize method.
* Unserialize is not possible, since it would require overwriting const fields.
** 提供此反序列化构造函数而不是Unserialize方法。
* 反序列化是不可能的,因为它需要覆盖const字段
*/
template <typename Stream>
CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}
bool IsNull() const {
return vin.empty() && vout.empty();
}
const uint256& GetHash() const {
return hash;
}
// Compute a hash that includes both transaction and witness data
uint256 GetWitnessHash() const; //计算包含交易和witness数据的散列
// Return sum of txouts.
CAmount GetValueOut() const; //返回交易出书金额总和
// GetValueIn() is a method on CCoinsViewCache, because
// inputs must be known to compute value in.
/**
* Get the total transaction size in bytes, including witness data.
* "Total Size" defined in BIP141 and BIP144.
* @return Total transaction size in bytes
*/
unsigned int GetTotalSize() const; // 返回交易大小
bool IsCoinBase() const //判断是否是创币交易
{
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return a.hash == b.hash;
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return a.hash != b.hash;
}
std::string ToString() const;
bool HasWitness() const
{
for (size_t i = 0; i < vin.size(); i++) {
if (!vin[i].scriptWitness.IsNull()) {
return true;
}
}
return false;
}
};
/** A mutable version of CTransaction. */
//可变交易类,内容和CTransaction差不多。只是交易可以直接修改,广播中传播和打包到区块的交易都是CTransaction类型。
struct CMutableTransaction
{
std::vector<CTxIn> vin;
std::vector<CTxOut> vout;
int32_t nVersion;
uint32_t nLockTime;
CMutableTransaction();
CMutableTransaction(const CTransaction& tx);
template <typename Stream>
inline void Serialize(Stream& s) const {
SerializeTransaction(*this, s);
}
template <typename Stream>
inline void Unserialize(Stream& s) {
UnserializeTransaction(*this, s);
}
template <typename Stream>
CMutableTransaction(deserialize_type, Stream& s) {
Unserialize(s);
}
/** Compute the hash of this CMutableTransaction. This is computed on the
* fly, as opposed to GetHash() in CTransaction, which uses a cached result.
*/
uint256 GetHash() const;
friend bool operator==(const CMutableTransaction& a, const CMutableTransaction& b)
{
return a.GetHash() == b.GetHash();
}
bool HasWitness() const
{
for (size_t i = 0; i < vin.size(); i++) {
if (!vin[i].scriptWitness.IsNull()) {
return true;
}
}
return false;
}
};
typedef std::shared_ptr<const CTransaction> CTransactionRef;
static inline CTransactionRef MakeTransactionRef() { return std::make_shared<const CTransaction>(); }
template <typename Tx> static inline CTransactionRef MakeTransactionRef(Tx&& txIn) { return std::make_shared<const CTransaction>(std::forward<Tx>(txIn)); }
#endif // BITCOIN_PRIMITIVES_TRANSACTION_H
类图
一个交易包CTransaction包括n个输入CTxIn和n个输出,每个输入指向前一笔交易的hash和对应交易中的第几笔交易,也就是找到自己前面一笔还没花费的输出,代码整成类图如下图:
CTx&CTxIn&CTout类图
参考:
https://juejin.im/post/5afa5c2951882567105fe47e
https://blog.csdn.net/TuxedoLinux/article/details/80360863
https://zhuanlan.zhihu.com/p/33227933
https://juejin.im/post/5ae0738bf265da0b851c88ff
网友评论