美文网首页
原理剖析(第 011 篇)Netty之服务端启动工作原理分析(下

原理剖析(第 011 篇)Netty之服务端启动工作原理分析(下

作者: HMILYYLIMH | 来源:发表于2018-03-25 19:17 被阅读41次

    原理剖析(第 011 篇)Netty之服务端启动工作原理分析(下)

    一、大致介绍

    1、由于篇幅过长难以发布,所以本章节接着上一节来的,上一章节为【原理剖析(第 010 篇)Netty之服务端启动工作原理分析(上)】;
    2、那么本章节就继续分析Netty的服务端启动,分析Netty的源码版本为:netty-netty-4.1.22.Final;
    

    二、三、四章节请看上一章节

    详见 原理剖析(第 010 篇)Netty之服务端启动工作原理分析(上)

    四、源码分析Netty服务端启动

    上一章节,我们主要分析了一下线程管理组对象是如何被实例化的,并且还了解到了每个线程管理组都有一个子线程数组来处理任务;
    那么接下来我们就直接从4.6开始分析了:

    4.6、为serverBootstrap添加配置参数

    1、源码:
        // NettyServer.java
        // 将 Boss、Worker 设置到 ServerBootstrap 服务端引导类中
        serverBootstrap.group(bossGroup, workerGroup)
                .channel(NioServerSocketChannel.class)
                // 指定通道类型为NioServerSocketChannel,一种异步模式,OIO阻塞模式为OioServerSocketChannel
                .localAddress("localhost", port)//设置InetSocketAddress让服务器监听某个端口已等待客户端连接。
                .childHandler(new ChannelInitializer<Channel>() {//设置childHandler执行所有的连接请求
                    @Override
                    protected void initChannel(Channel ch) throws Exception {
                        ch.pipeline().addLast(new PacketHeadDecoder());
                        ch.pipeline().addLast(new PacketBodyDecoder());
    
                        ch.pipeline().addLast(new PacketHeadEncoder());
                        ch.pipeline().addLast(new PacketBodyEncoder());
    
                        ch.pipeline().addLast(new PacketHandler());
                    }
                });
    
    2、主要为后序的通信设置了一些配置参数而已,指定构建的Channel为NioServerSocketChannel,说明需要启动的是服务端Netty;
       而后面的服务端Channel实例化,就是需要通过这个参数反射实例化得到;
    
    3、同时还设置childHandler,这个childHandler也是有顺序的,服务端读数据时执行的顺序是PacketHeadDecoder、PacketBodyDecoder、PacketHandler;
       而服务端写数据时执行的顺序是PacketHandler、PacketBodyEncoder、PacketHeadEncoder;
       所以在书写方式大家千万别写错了,按照本示例代码的方式书写即可;
    

    4.7、serverBootstrap调用bind绑定注册

    1、源码:
        // NettyServer.java
        // 最后绑定服务器等待直到绑定完成,调用sync()方法会阻塞直到服务器完成绑定,然后服务器等待通道关闭,因为使用sync(),所以关闭操作也会被阻塞。
        ChannelFuture channelFuture = serverBootstrap.bind().sync();
    
    2、这里其实没什么好看的,接下来我们就主要看看这个bind()方法主要干了些啥,就这么简简单单一句代码就把服务端给启动起来了,有点神气了;
    

    4.8、bind()操作

    1、源码:
        // AbstractBootstrap.java
        /**
         * Create a new {@link Channel} and bind it.
         */
        public ChannelFuture bind() {
            validate();
            SocketAddress localAddress = this.localAddress;
            if (localAddress == null) {
                throw new IllegalStateException("localAddress not set");
            }
            return doBind(localAddress); // 创建一个Channel,并且绑定它
        }
    
        // AbstractBootstrap.java
        private ChannelFuture doBind(final SocketAddress localAddress) {
            final ChannelFuture regFuture = initAndRegister(); // 初始化和注册
    
            // 执行到此,服务端大概完成了以下几件事情:
            // 1、实例化NioServerSocketChannel,并为Channel配备了pipeline、config、unsafe对象;
            // 2、将多个handler添加至pipeline双向链表中,并且等待Channel注册成功后需要给每个handler触发添加或者移除事件;
            // 3、将NioServerSocketChannel注册到NioEventLoop的多路复用器上;
    
            final Channel channel = regFuture.channel();
            if (regFuture.cause() != null) {
                return regFuture;
            }
    
            // 既然NioServerSocketChannel的Channel绑定到了多路复用器上,那么接下来就是绑定地址,绑完地址就可以正式进行通信了
            if (regFuture.isDone()) {
                // At this point we know that the registration was complete and successful.
                ChannelPromise promise = channel.newPromise();
                doBind0(regFuture, channel, localAddress, promise);
                return promise;
            } else {
                // Registration future is almost always fulfilled already, but just in case it's not.
                final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
                regFuture.addListener(new ChannelFutureListener() {
                    @Override
                    public void operationComplete(ChannelFuture future) throws Exception {
                        Throwable cause = future.cause();
                        if (cause != null) {
                            // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                            // IllegalStateException once we try to access the EventLoop of the Channel.
                            promise.setFailure(cause);
                        } else {
                            // Registration was successful, so set the correct executor to use.
                            // See https://github.com/netty/netty/issues/2586
                            promise.registered();
    
                            doBind0(regFuture, channel, localAddress, promise);
                        }
                    }
                });
                return promise;
            }
        }
    
    2、大致一看,原来doBind方法主要干了两件事情,initAndRegister与doBind0;
    
    3、initAndRegister主要做的事情就是初始化服务端Channel,并且将服务端Channel注册到bossGroup子线程的多路复用器上;
    
    4、doBind0则主要完成服务端启动的最后一步,绑定地址,绑定完后就可以正式进行通信了;
    

    4.9、initAndRegister()初始化和注册

    1、源码:
        // AbstractBootstrap.java
        final ChannelFuture initAndRegister() {
            Channel channel = null;
            try {
                // 反射调用clazz.getConstructor().newInstance()实例化类
                // 同时也实例化了Channel,如果是服务端的话则为NioServerSocketChannel实例化对象
                // 在实例化NioServerSocketChannel的构造方法中,也为每个Channel创建了一个管道属性对象DefaultChannelPipeline=pipeline对象
                // 在实例化NioServerSocketChannel的构造方法中,也为每个Channel创建了一个配置属性对象NioServerSocketChannelConfig=config对象
                // 在实例化NioServerSocketChannel的构造方法中,也为每个Channel创建了一个unsafe属性对象NioMessageUnsafe=unsafe对象
                channel = channelFactory.newChannel(); // 调用ReflectiveChannelFactory的newChannel方法
    
                // 初始化刚刚被实例化的channel
                init(channel);
            } catch (Throwable t) {
                if (channel != null) {
                    // channel can be null if newChannel crashed (eg SocketException("too many open files"))
                    channel.unsafe().closeForcibly();
                    // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
                    return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
                }
                // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
                return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
            }
    
            // config().group()=bossGroup或parentGroup,然后利用parentGroup去注册NioServerSocketChannel=channel
            ChannelFuture regFuture = config().group().register(channel);
            if (regFuture.cause() != null) {
                if (channel.isRegistered()) {
                    channel.close();
                } else {
                    channel.unsafe().closeForcibly();
                }
            }
    
            // If we are here and the promise is not failed, it's one of the following cases:
            // 1) If we attempted registration from the event loop, the registration has been completed at this point.
            //    i.e. It's safe to attempt bind() or connect() now because the channel has been registered.
            // 2) If we attempted registration from the other thread, the registration request has been successfully
            //    added to the event loop's task queue for later execution.
            //    i.e. It's safe to attempt bind() or connect() now:
            //         because bind() or connect() will be executed *after* the scheduled registration task is executed
            //         because register(), bind(), and connect() are all bound to the same thread.
    
            return regFuture;
        }
    
    2、逐行分析后会发现,首先通过反射实例化服务端channel对象,然后将服务端channel初始化一下;
    
    3、然后调用bossGroup的注册方法,将服务端channel作为参数传入;
    
    4、至此,方法名也表明该段代码的意图,实例化并初始化服务端Channel,然后注册到bossGroup子线程的多路复用器上;
    

    4.10、init服务端Channel

    1、源码:
        // ServerBootstrap.java
        @Override
        void init(Channel channel) throws Exception {
            final Map<ChannelOption<?>, Object> options = options0();
            synchronized (options) {
                setChannelOptions(channel, options, logger);
            }
    
            final Map<AttributeKey<?>, Object> attrs = attrs0();
            synchronized (attrs) {
                for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
                    @SuppressWarnings("unchecked")
                    AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
                    channel.attr(key).set(e.getValue());
                }
            }
    
            // 服务端ServerSocketChannel的管道对象,Channel实例化的时候就被创建出来了
            ChannelPipeline p = channel.pipeline();
    
            final EventLoopGroup currentChildGroup = childGroup;
            final ChannelHandler currentChildHandler = childHandler;
            final Entry<ChannelOption<?>, Object>[] currentChildOptions;
            final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
            synchronized (childOptions) {
                currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
            }
            synchronized (childAttrs) {
                currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
            }
    
            ChannelInitializer<Channel> tempHandler = new ChannelInitializer<Channel>() {
                @Override
                public void initChannel(final Channel ch) throws Exception {
                    final ChannelPipeline pipeline = ch.pipeline();
                    ChannelHandler handler = config.handler();
                    if (handler != null) {
                        pipeline.addLast(handler);
                    }
    
                    ch.eventLoop().execute(new Runnable() {
                        @Override
                        public void run() {
                            System.out.println("initAndRegister.init.initChannel-->ch.eventLoop().execute");
                            pipeline.addLast(new ServerBootstrapAcceptor(
                                    ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                        }
                    });
                }
            };
    
            // 这里我将addLast的参数剥离出来了,方便查看阅读
            p.addLast(tempHandler);
        }
    
        // DefaultChannelPipeline.java
        @Override
        public final ChannelPipeline addLast(ChannelHandler... handlers) {
            return addLast(null, handlers);
        }   
        
        // DefaultChannelPipeline.java
        @Override
        public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {
            if (handlers == null) {
                throw new NullPointerException("handlers");
            }
    
            for (ChannelHandler h: handlers) {
                if (h == null) {
                    break;
                }
                addLast(executor, null, h);
            }
    
            return this;
        }   
        
        // DefaultChannelPipeline.java
        @Override
        public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
            final AbstractChannelHandlerContext newCtx;
            // 这里加了synchronized关键字,因此说addLast的新增动作都是线程安全的
            // 然后再细看一下其它的方法,只要涉及到的handler的增删改动作的方法,那些方法的代码块都是经过synchronized修饰了,保证操作过程中线程安全
            synchronized (this) {
                // 检查handler的一些基本信息,若不是被Sharable注解过的话,而且已经被添加到其他pipeline时则会抛出异常
                checkMultiplicity(handler);
    
                // 通过一系列参数的封装,最后封装成DefaultChannelHandlerContext对象
                newCtx = newContext(group, filterName(name, handler), handler);
    
                // 将newCtx添加到倒数第二的位置,即tail的前面一个位置
                // 这里的pipeline中的handler的构成方式是一个双向链表式的结构
                addLast0(newCtx);
    
                // If the registered is false it means that the channel was not registered on an eventloop yet.
                // In this case we add the context to the pipeline and add a task that will call
                // ChannelHandler.handlerAdded(...) once the channel is registered.
                // 该addLast方法可能会被其它各个地方调用,但是又为了保证handler的线程安全,则采用了synchronized来保证addLast的线程安全
                // 在Channel未注册到多路复用器之前,registered肯定为false,那么则把需要添加的handler封装成AbstractChannelHandlerContext对象,
                // 然后调用setAddPending方法,pengding意味着在将来的某个时刻调用,那到底在什么时刻被调用呢?
                // 英文解释中提到一旦Channel注册成功了的话则会被调用,所以Channel后续注册完毕,再调用ChannelHandler.handlerAdded
                if (!registered) {
                    newCtx.setAddPending();
    
                    // 将newCtx追加到PendingHandlerCallback单向链表的队尾,以便将来回调时用到
                    callHandlerCallbackLater(newCtx, true);
                    return this;
                }
    
                EventExecutor executor = newCtx.executor();
                if (!executor.inEventLoop()) {
                    newCtx.setAddPending();
                    executor.execute(new Runnable() {
                        @Override
                        public void run() {
                            callHandlerAdded0(newCtx);
                        }
                    });
                    return this;
                }
            }
    
            // 如果能顺利执行到这里来的话,则表明Channel已经注册到了NioEventLoop的多路复用器上面了
            // 然后接下来的就是触发调用newCtx的ChannelHandler.handlerAdded方法
            callHandlerAdded0(newCtx);
            return this;
        }   
        
        // DefaultChannelPipeline.java
        private void addLast0(AbstractChannelHandlerContext newCtx) {
            AbstractChannelHandlerContext prev = tail.prev; // 将目前双向链表tail的前驱结点找出来命名为prev
            newCtx.prev = prev; // 将新的结点的前驱结点指向prev
            newCtx.next = tail; // 将新的结点的后驱结点指向tail
            prev.next = newCtx; // 将prev的后驱结点指向新的结点
            tail.prev = newCtx; // 将tail的前驱结点指向新的结点
    
            // 就这样,将新的结点通过一系列的指针指向,顺利的将新结点插到了tail的前面,
            // 也就是链表中倒数第2个结点的位置,原链表中倒数第2个结点变成倒数第3个结点
        }   
        
        // DefaultChannelPipeline.java
        private void callHandlerCallbackLater(AbstractChannelHandlerContext ctx, boolean added) {
            assert !registered;
    
            // 根据added布尔值封装成PendingHandlerAddedTask、PendingHandlerRemovedTask对象
            PendingHandlerCallback task = added ? new PendingHandlerAddedTask(ctx) : new PendingHandlerRemovedTask(ctx);
            PendingHandlerCallback pending = pendingHandlerCallbackHead;
            if (pending == null) { // 首次添加时则直接赋值然后返回
                pendingHandlerCallbackHead = task;
            } else {
                // 非首次赋值的话,那么通过while循环找到队尾,然后将队尾的next指向赋上task对象
                // Find the tail of the linked-list.
                while (pending.next != null) {
                    pending = pending.next; // 不停的寻找链表中的下一个结点
                }
                // 当pending.next为空说明已经找到了队尾结点,然后将队尾的next指向赋上task对象
                pending.next = task;
            }
        }   
        
    2、其实初始化服务端Channel也做了蛮多的事情,事情再多也只是p.addLast(tempHandler)这句代码干的事情多;
    
    3、主要完成了服务端Channel中管道对象pipeline添加handler的操作,添加过程中主要有以下几点:
        • 添加的过程中是由synchronized关键字来保证线程安全的;
        • 将传入的handler数组依次循环封装成AbstractChannelHandlerContext对象添加到管道锁维护的handler链表中;
        • 当未注册成功时pipeline还维护了一个用后后序触发调用newCtx的单向链表对象pendingHandlerCallbackHead;
        • 当注册成功后,后序会迭代pendingHandlerCallbackHead对象依次执行所有任务的run方法;
        • 当注册成功后,还会触发调用这些newCtx的一些方法,主要是newCtx的ChannelHandler.handlerAdded方法;
        
    4、讲到这里,initAndRegister总算讲了一半了,接下来我们就要看看被实例化的服务端channel是如何注册到多路复用器上的;
    

    4.11、config().group().register(channel)

    1、源码:
        // MultithreadEventLoopGroup.java
        @Override
        public ChannelFuture register(Channel channel) {
            // next()对象其实是NioEventLoopGroup内部中的children[]属性中的其中一个,通过一定规则挑选一个NioEventLoop
            // 那么也就是说我们最终调用的是NioEventLoop来实现注册channel
            return next().register(channel);
    
            // 从另外一个层面来讲,我们要想注册一个Channel,那么就可以直接调用NioEventLoopGroup父类中的register(Channel)即可注册Channel,
            // 并且会按照一定的规则顺序通过next()挑选一个NioEventLoop并将Channel绑定到它上面
            // 如果NioEventLoopGroup为bossGroup的话,那么该方法注册的肯定是NioServerSocketChannel对象
            // 如果NioEventLoopGroup为workerGroup的话,那么该方法注册的肯定是ServerSocketChannel对象
        }
    
        // SingleThreadEventLoop.java
        @Override
        public ChannelFuture register(Channel channel) {
            // 当前this对象是属于children[]属性中的其中一个
            // 将传入的Channel与当前对象this一起封装成DefaultChannelPromise对象
            // 然后再调用当前对象的register(ChannelPromise)注册方法
            return register(new DefaultChannelPromise(channel, this));
        }
    
        // SingleThreadEventLoop.java
        @Override
        public ChannelFuture register(final ChannelPromise promise) {
            // 校验当前传参是否为空,原则上既然是不可能为空的,因为上一个步骤是通过new出来的一个对象
            ObjectUtil.checkNotNull(promise, "promise");
            // promise.channel()其实就是上面new DefaultChannelPromise(channel, this)通过封装后又取出这个channel对象
            // promise.channel().unsafe()而每个Channel都有一个unsafe对象,对于NioServerSocketChannel来说NioMessageUnsafe=unsafe
            // 当前this对象是属于children[]属性中的其中一个
            promise.channel().unsafe().register(this, promise);
            return promise;
        }   
    
        // AbstractUnsafe.java
        @Override
        public final void register(EventLoop eventLoop, final ChannelPromise promise) {
            // eventLoop对象是属于children[]属性中的其中一个
            // 而当前类又是Channel的一个抽象类AbstractChannel,也是NioServerSocketChannel的父类
            if (eventLoop == null) {
                throw new NullPointerException("eventLoop");
            }
            if (isRegistered()) {
                promise.setFailure(new IllegalStateException("registered to an event loop already"));
                return;
            }
            if (!isCompatible(eventLoop)) {
                promise.setFailure(
                        new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
                return;
            }
    
            // 这里的 this.eventLoop 就是Children[i]中的一个,也就是具体执行任务的线程封装对象
            AbstractChannel.this.eventLoop = eventLoop;
    
            if (eventLoop.inEventLoop()) { // 如果对象eventLoop中的线程对象和当前线程比对是一样的话
                register0(promise); // 那么则直接调用注册方法register0
            } else {
                try {
                    // 比对的结果如果不一样,十有八九都是该eventLoop的线程还未启动,
                    // 因此利用eventLoop的execute将register0(promise)方法作为任务添加到任务队列中,并启动线程来执行任务
                    eventLoop.execute(new Runnable() {
                        @Override
                        public void run() {
                            register0(promise);
                        }
                    });
                    // 而服务端Channel的注册,走的是该else分支,因为线程都还没创建,eventLoop.inEventLoop()肯定就是false结果
                } catch (Throwable t) {
                    logger.warn(
                            "Force-closing a channel whose registration task was not accepted by an event loop: {}",
                            AbstractChannel.this, t);
                    closeForcibly();
                    closeFuture.setClosed();
                    safeSetFailure(promise, t);
                }
            }
        }
        
        // SingleThreadEventExecutor.java
        /**
         * 向任务队列中添加任务task。
         *
         * @param task
         */
        @Override
        public void execute(Runnable task) {
            if (task == null) { // 如果传入的task任务为空,则直接抛空指针异常,此方法严格控制传入参数必须非空
                throw new NullPointerException("task");
            }
    
            boolean inEventLoop = inEventLoop(); // 判断要添加的任务的这个线程,是不是和正在运行的nioEventLoop的处于同一个线程?
            if (inEventLoop) { // 如果是,则说明就是当前线程正在添加task任务,那么则直接调用addTask方法添加到队列中
                addTask(task); // 添加task任务
            } else {
                startThread(); // 如果不是当前线程,则看看实例化的对象nioEventLoop父类中state字段是否标识有新建线程,没有的话则利用线程池新创建一个线程,有的话则不用理会了
                addTask(task); // 添加task任务
                // 防止意外情况,还需要判断下是否被关闭掉,如果被关闭掉的话,则将刚刚添加的任务删除掉并采取拒绝策略直接抛出RejectedExecutionException异常
                if (isShutdown() && removeTask(task)) {
                    reject(); // 拒绝策略直接抛出RejectedExecutionException异常
                }
            }
    
            // addTaskWakesUp:添加任务时需要唤醒标志,默认值为false,通过构造方法传进来的也是false
            // wakesUpForTask(task):不是NonWakeupRunnable类型的task则返回true,意思就是只要不是NonWakeupRunnable类型的task,都需要唤醒阻塞操作
            if (!addTaskWakesUp && wakesUpForTask(task)) {
                wakeup(inEventLoop);
            }
        }
        
    2、通过一路跟踪config().group().register(channel)该方法进去,最后会发现,源码会调用一个register0(promise)的代码来进行注册;
    
    3、但是跳出来一看,细细回味config().group().register(channel)这段代码,可以得出这样的一个结论:
       若以后大家想注册channel的话,直接通过线程管理组调用register方法,传入想要注册的channel对象即可;
       
    4、当然还有一点请大家留意,execute(Runnable task)可以随意调用添加任务,如果线程已启动则直接添加,未启动的话则先启动线程再添加任务;
       
    5、那么我们还是先尽快进入register0(promise)看看究竟是如何注册channel的;
    

    4.12、register0(promise)

    1、源码:
        // AbstractUnsafe.java
        private void register0(ChannelPromise promise) {
            try {
                // check if the channel is still open as it could be closed in the mean time when the register
                // call was outside of the eventLoop
                if (!promise.setUncancellable() || !ensureOpen(promise)) {
                    return;
                }
                boolean firstRegistration = neverRegistered;
                doRegister(); // 调用Channel的注册方法,让Channel的子类AbstractNioChannel来实现注册
    
                // 执行到此,说明Channel已经注册到了多路复用器上,并且也没有抛出什么异常,那么接下来就赋值变量表明已经注册成功
                neverRegistered = false;
                registered = true;
    
                // Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
                // user may already fire events through the pipeline in the ChannelFutureListener.
                pipeline.invokeHandlerAddedIfNeeded(); // 会回调initAndRegister中init方法的p.addLast的initChannel回调
    
                safeSetSuccess(promise);
                pipeline.fireChannelRegistered();
                // Only fire a channelActive if the channel has never been registered. This prevents firing
                // multiple channel actives if the channel is deregistered and re-registered.
                if (isActive()) { // 检测Channel是否处于活跃状态,这里调用的是底层的socket的活跃状态
                    if (firstRegistration) {
                        pipeline.fireChannelActive(); // 这里也是注册成功后会仅仅只会被调用一次
                    } else if (config().isAutoRead()) {
                        // This channel was registered before and autoRead() is set. This means we need to begin read
                        // again so that we process inbound data.
                        //
                        // See https://github.com/netty/netty/issues/4805
                        beginRead(); // 设置Channel的读事件
                    }
                }
            } catch (Throwable t) {
                // Close the channel directly to avoid FD leak.
                closeForcibly();
                closeFuture.setClosed();
                safeSetFailure(promise, t);
            }
        }
    
        // AbstractNioChannel.java
        @Override
        protected void doRegister() throws Exception {
            boolean selected = false;
            for (;;) { // 自旋式的死循环,如果正常操作不出现异常的话,那么则会一直尝试将Channel注册到多路复用器selector上面
                try {
                    // eventLoop()对象是属于children[]属性中的其中一个,children是NioEventLoop类型的对象
                    // 而前面也了解到过,在实例化每个children的时候,会为每个children创建一个多路复用器selector与unwrappedSelector
                    selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
                    // 如果将Channel注册到了多路复用器上的成功且没有抛什么异常的话,则返回跳出循环
                    return;
                } catch (CancelledKeyException e) {
                    if (!selected) {
                        // Force the Selector to select now as the "canceled" SelectionKey may still be
                        // cached and not removed because no Select.select(..) operation was called yet.
                        eventLoop().selectNow();
                        selected = true;
                    } else {
                        // We forced a select operation on the selector before but the SelectionKey is still cached
                        // for whatever reason. JDK bug ?
                        throw e;
                    }
                }
            }
        }   
        
        // DefaultChannelPipeline.java
        final void invokeHandlerAddedIfNeeded() {
            assert channel.eventLoop().inEventLoop();
            if (firstRegistration) { // pipeline标识是否已注册,默认值为true
                firstRegistration = false; // 马上置位false,告诉大家该方法只会被调用一次
                // We are now registered to the EventLoop. It's time to call the callbacks for the ChannelHandlers,
                // that were added before the registration was done.
                // 到此为止,我们已经将Channel注册到了NioEventLoop的多路复用器上,那么接下来是时候回调Handler被添加进来
                callHandlerAddedForAllHandlers();
            }
        }
    
        // DefaultChannelPipeline.java
        private void callHandlerAddedForAllHandlers() {
            final PendingHandlerCallback pendingHandlerCallbackHead;
            synchronized (this) {
                assert !registered; // 测试registered是否为false,因为该方法已经表明只会被调用一次,所以这里就严格判断
    
                // This Channel itself was registered.
                registered = true; // 而且当registered设置为true后,就不会再改变该值的状态
    
                pendingHandlerCallbackHead = this.pendingHandlerCallbackHead;
                // Null out so it can be GC'ed.
                this.pendingHandlerCallbackHead = null;
            }
    
            // This must happen outside of the synchronized(...) block as otherwise handlerAdded(...) may be called while
            // holding the lock and so produce a deadlock if handlerAdded(...) will try to add another handler from outside
            // the EventLoop.
            PendingHandlerCallback task = pendingHandlerCallbackHead;
            // 通过while循环,单向链表一个个回调task的execute,该回调添加的就回调添加,该回调移除的则回调移除
            while (task != null) {
                task.execute();
                task = task.next;
            }
        }
    
    2、看完register0(promise)是不是觉得,原来服务端channel的注册是这么简单,最后就是调用javaChannel().register(...)这个方法一下,然后就这么稀里糊涂的注册到多路复用器上了;
    
    3、在注册完之际,还会找到之前的单向链表对象pendingHandlerCallbackHead,并且依依回调task.execute方法;
    
    4、然后触发fireChannelRegistered注册成功事件,告知上层说我们的服务端channel已经注册成功了,大家请知悉一下;
    
    5、最后通过beginRead设置服务端的读事件标志,就是说服务端的channel仅对读事件感兴趣;
    
    6、至此initAndRegister这块算是讲完了,那么接下来就看看最后一个步骤绑定ip地址,完成通信前的最后一步;
    

    4.13、doBind0(regFuture, channel, localAddress, promise)

    1、源码:
        // AbstractBootstrap.java
        private static void doBind0(
                final ChannelFuture regFuture, final Channel channel,
                final SocketAddress localAddress, final ChannelPromise promise) {
    
            // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up
            // the pipeline in its channelRegistered() implementation.
            // 服务端启动最后一个步骤,绑完地址就可以正式进行通信了
            channel.eventLoop().execute(new Runnable() {
                @Override
                public void run() {
                    if (regFuture.isSuccess()) {
                        // 服务端channel直接调用bind方法进行绑定地址
                        channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                    } else {
                        promise.setFailure(regFuture.cause());
                    }
                }
            });
        }
    
        // AbstractChannel.java
        @Override
        public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
            return pipeline.bind(localAddress, promise);
        }
    
        // DefaultChannelPipeline.java
        @Override
        public final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
            return tail.bind(localAddress, promise);
        }
    
        // AbstractChannelHandlerContext.java
        @Override
        public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
            if (localAddress == null) {
                throw new NullPointerException("localAddress");
            }
            if (isNotValidPromise(promise, false)) {
                // cancelled
                return promise;
            }
    
            final AbstractChannelHandlerContext next = findContextOutbound();
            EventExecutor executor = next.executor();
            if (executor.inEventLoop()) {
                next.invokeBind(localAddress, promise);
            } else {
                safeExecute(executor, new Runnable() {
                    @Override
                    public void run() {
                        next.invokeBind(localAddress, promise);
                    }
                }, promise, null);
            }
            return promise;
        }
    
        // AbstractChannelHandlerContext.java
        private void invokeBind(SocketAddress localAddress, ChannelPromise promise) {
            if (invokeHandler()) {
                try {
                    ((ChannelOutboundHandler) handler()).bind(this, localAddress, promise);
                } catch (Throwable t) {
                    notifyOutboundHandlerException(t, promise);
                }
            } else {
                bind(localAddress, promise);
            }
        }
    
        // HeadContext.java
        @Override
        public void bind(
                ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
                throws Exception {
            unsafe.bind(localAddress, promise);
        }
    
        // AbstractUnsafe.java
        @Override
        public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
            assertEventLoop();
    
            if (!promise.setUncancellable() || !ensureOpen(promise)) {
                return;
            }
    
            // See: https://github.com/netty/netty/issues/576
            if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
                localAddress instanceof InetSocketAddress &&
                !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
                !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
                // Warn a user about the fact that a non-root user can't receive a
                // broadcast packet on *nix if the socket is bound on non-wildcard address.
                logger.warn(
                        "A non-root user can't receive a broadcast packet if the socket " +
                        "is not bound to a wildcard address; binding to a non-wildcard " +
                        "address (" + localAddress + ") anyway as requested.");
            }
    
            boolean wasActive = isActive();
            try {
                doBind(localAddress);
            } catch (Throwable t) {
                safeSetFailure(promise, t);
                closeIfClosed();
                return;
            }
    
            if (!wasActive && isActive()) {
                invokeLater(new Runnable() {
                    @Override
                    public void run() {
                        pipeline.fireChannelActive();
                    }
                });
            }
    
            safeSetSuccess(promise);
        }
    
        // NioServerSocketChannel.java
        @Override
        protected void doBind(SocketAddress localAddress) throws Exception {
            if (PlatformDependent.javaVersion() >= 7) {
                javaChannel().bind(localAddress, config.getBacklog());
            } else {
                javaChannel().socket().bind(localAddress, config.getBacklog());
            }
        }
    
    2、经过这么一路调用,其实最终会发现,绑定地址也是通过javaChannel().bind(...)这么简短的一句话就搞定了;
       而前面的注册到多路复用器上调用的是javaChannel().register(...)一句简短代码;
       从而可得出这么一个结论:只要关系到channel的注册绑定,最终核心底层都是调用这个channel的bind和register方法;
    
    3、至此,服务端的启动流程算是完结了。。
    

    五、总结

        最后我们来总结下,通过分析Netty的服务端启动,经过的流程如下:
        • 创建两个线程管理组,以及实例化每个线程管理组的子线程数组children[];
        • 设置启动类参数,比如channel、localAddress、childHandler等参数;
        • 反射实例化NioServerSocketChannel,创建ChannelId、unsafe、pipeline等对象;
        • 初始化NioServerSocketChannel,设置attr、option,添加新的handler到服务端pipeline管道中;
        • 调用JDK底层做ServerSocketChannel注册到多路复用器上,并且注册成功后回调pipeline管道中的单向链表依次执行task任务;
        • 调用JDK底层做NioServerSocketChannel绑定端口,并触发active事件;
    

    六、下载地址

    https://gitee.com/ylimhhmily/SpringCloudTutorial.git

    SpringCloudTutorial交流QQ群: 235322432

    SpringCloudTutorial交流微信群: 微信沟通群二维码图片链接

    欢迎关注,您的肯定是对我最大的支持!!!

    <上一篇        首页        下一篇>

    相关文章

      网友评论

          本文标题:原理剖析(第 011 篇)Netty之服务端启动工作原理分析(下

          本文链接:https://www.haomeiwen.com/subject/ajrkcftx.html