美文网首页
Dijkstra 模板

Dijkstra 模板

作者: 失树 | 来源:发表于2017-12-11 09:35 被阅读0次
    void Dijkstra(int v0)
    {
        bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
          int n=MAXNUM;
        for(int i=1; i<=n; ++i)
        {
            dist[i] = A[v0][i];
            S[i] = false;                                // 初始都未用过该点
            if(dist[i] == MAXINT)    
                  prev[i] = -1;
            else 
                  prev[i] = v0;
         }
         dist[v0] = 0;
         S[v0] = true;   
        for(int i=2; i<=n; i++)
        {
             int mindist = MAXINT;
             int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
             for(int j=1; j<=n; ++j)
                if((!S[j]) && dist[j]<mindist)
                {
                      u = j;                             // u保存当前邻接点中距离最小的点的号码 
                      mindist = dist[j];
                }
             S[u] = true; 
             for(int j=1; j<=n; j++)
                 if((!S[j]) && A[u][j]<MAXINT)
                 {
                     if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                     {
                         dist[j] = dist[u] + A[u][j];    //更新dist 
                         prev[j] = u;                    //记录前驱顶点 
                      }
                  }
         }
    }
    
    int dijkstra(int n)
    {
        //初始化v[0]到v[i]的距离
        for(int i=1;i<=n;i++)
            dis[i] = w[0][i];                                       
        vis[0]=1;//标记v[0]点
        for(int i = 1; i <= n; i++)
        {
            //查找最近点
            int min = INF,k = 0;
            for(int j = 0; j <= n; j++)
                if(!vis[w] && dis[j] < min)
                    min = dis[w],k = j;
            vis[k] = 1;//标记查找到的最近点
            //判断是直接v[0]连接v[j]短,还是经过v[k]连接v[j]更短
            for(int j = 1; j <= n; j++)
                if(!vis[j] && min+w[k][j] < dis[j])
                    d[j] = min+w[k][j];
        }
        return dis[j];
    }
    

    堆优化

    #include<iostream>
    #include<vector>
    #include<queue>
    
    #define MAXN 10005
    #define INF  0x7fffffff
    
    using namespace std;
    struct edge{
        int to;
        int wt;
        edge(int to_,int wt_):to(to_),wt(wt_){};
        /*bool operator< (edge& b){
            return val<b.val;
        }
        edge(){};
        edge(int from_,int to_,int val_):from(from_),to(to_),val(val_){};*/
    };
    struct node{
        int to;
        int val;
        bool operator<(node& b){
            return val<b.val;
        }
        node(int to_,int val_):to(to_),val(val_){};
        node(){};
    };
    vector<edge> adj[MAXN];
    typedef vector<edge>::iterator it;
    priority_queue<node, vector<node>,less<node> > heap;
    int vis[MAXN]={0};
    int dis[MAXN]={0};
    int prev[MAXN]={0};
    void add(int from,int to,int wt){
        adj[from].push_back(edge(to,wt));
    }
    void dijkstra(int from,int n){
    
        for(int i=1;i<=n;i++){
            dis[i]=INF;
            vis[i]=0;
        }
        dis[from]=0;
        heap.push(node(from,0));
    
        for(int i=1;i<=n;i++){
            node now;
            while(vis[(now=heap.top()).to])
                heap.pop();
            heap.pop();
            vis[now.to]=1;
            for(it i=adj[now.to].begin();i!=adj[now.to].end();++i){
                if(dis[now.to]+i->wt<dis[i->to]){
                    dis[i->to]=dis[now.to]+i->wt;
                    heap.push(node(i->to,dis[i->to]));
                }
            }
        }
    }
    int main(){
        int from,n;
        cin>>n;
        cin>>from;
        int m;
        int from,to,wt;
        for(int i=1;i<=m;i++){
            cin>>from>>to>>wt;
            add(from,to,wt);
        }
        dijkstra(from,n);
        for(int i=1;i<=n;i++){
            cout<<dis[i]<<" ";
        }
        cout<<endl;
        return 0;
    }
    

    相关文章

      网友评论

          本文标题:Dijkstra 模板

          本文链接:https://www.haomeiwen.com/subject/akobixtx.html