美文网首页
Runtime源码分析系列(二)之方法查找C/C++递归部分

Runtime源码分析系列(二)之方法查找C/C++递归部分

作者: 溪浣双鲤 | 来源:发表于2020-03-08 10:12 被阅读0次

接着上篇汇编部分,我们继续分析Runtime底层源码:如果通过sel找到imp的剩余部分,以及最后对这两篇文章分析及流程做个总结。下面直入正题:

二、C/C++递归查找

上篇我们最后说到了从汇编回来后,会跳转到这个C函数lookUpImpOrForward,先放上这个函数的实现部分,我把主要思路部分代码都做上了数字标记,然后我们来按照这个标记一层一层分析:

/***********************************************************************
* lookUpImpOrForward.
* The standard IMP lookup. 
* initialize==NO tries to avoid +initialize (but sometimes fails)
* cache==NO skips optimistic unlocked lookup (but uses cache elsewhere)
* Most callers should use initialize==YES and cache==YES.
* inst is an instance of cls or a subclass thereof, or nil if none is known. 
*   If cls is an un-initialized metaclass then a non-nil inst is faster.
* May return _objc_msgForward_impcache. IMPs destined for external use 
*   must be converted to _objc_msgForward or _objc_msgForward_stret.
*   If you don't want forwarding at all, use lookUpImpOrNil() instead.
**********************************************************************/
IMP lookUpImpOrForward(Class cls, SEL sel, id inst, 
                       bool initialize, bool cache, bool resolver)
{
    IMP imp = nil;
    bool triedResolver = NO;

    runtimeLock.assertUnlocked();
    
    //步骤1、检查缓存以及检查class是否初始化和实现
    // Optimistic cache lookup 
    if (cache) {
        imp = cache_getImp(cls, sel);
        if (imp) return imp;
    }

    // runtimeLock is held during isRealized and isInitialized checking
    // to prevent races against concurrent realization.

    // runtimeLock is held during method search to make
    // method-lookup + cache-fill atomic with respect to method addition.
    // Otherwise, a category could be added but ignored indefinitely because
    // the cache was re-filled with the old value after the cache flush on
    // behalf of the category.

    //加了runtimeLock运行时锁,加锁了read()读取操作,其中runtimeLock是通过pthread_rwlock_t实现的

    runtimeLock.read();

     //检查类是否初始化和实现
    if (!cls->isRealized()) {
        // Drop the read-lock and acquire the write-lock.
        // realizeClass() checks isRealized() again to prevent
        // a race while the lock is down.
        runtimeLock.unlockRead();
        runtimeLock.write();

        realizeClass(cls);

        runtimeLock.unlockWrite();
        runtimeLock.read();
    }

    if (initialize  &&  !cls->isInitialized()) {
        runtimeLock.unlockRead();
        _class_initialize (_class_getNonMetaClass(cls, inst));
        runtimeLock.read();
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

    
    //步骤2、查找部分
 retry:    
    runtimeLock.assertReading();

    // Try this class's cache.

    imp = cache_getImp(cls, sel);
    if (imp) goto done;

    // Try this class's method lists.
    {
        Method meth = getMethodNoSuper_nolock(cls, sel);
        if (meth) {
            log_and_fill_cache(cls, meth->imp, sel, inst, cls);
            imp = meth->imp;
            goto done;
        }
    }

    // Try superclass caches and method lists.
    {
        unsigned attempts = unreasonableClassCount();
        for (Class curClass = cls->superclass;
             curClass != nil;
             curClass = curClass->superclass)
        {
            // Halt if there is a cycle in the superclass chain.
            if (--attempts == 0) {
                _objc_fatal("Memory corruption in class list.");
            }
            
            // Superclass cache.
            imp = cache_getImp(curClass, sel);
            if (imp) {
                if (imp != (IMP)_objc_msgForward_impcache) {
                    // Found the method in a superclass. Cache it in this class.
                    log_and_fill_cache(cls, imp, sel, inst, curClass);
                    goto done;
                }
                else {
                    // Found a forward:: entry in a superclass.
                    // Stop searching, but don't cache yet; call method 
                    // resolver for this class first.
                    break;
                }
            }
            
            // Superclass method list.
            Method meth = getMethodNoSuper_nolock(curClass, sel);
            if (meth) {
                log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
                imp = meth->imp;
                goto done;
            }
        }
    }

    //步骤3、没有找到实现,尝试一次动态方法解析
    // No implementation found. Try method resolver once.

    if (resolver  &&  !triedResolver) {
        runtimeLock.unlockRead();
        _class_resolveMethod(cls, sel, inst);
        runtimeLock.read();
        // Don't cache the result; we don't hold the lock so it may have 
        // changed already. Re-do the search from scratch instead.
        triedResolver = YES;
        goto retry;
    }

     //步骤4、没有找到实现,动态方法解析也没用,使用消息转发
    // No implementation found, and method resolver didn't help. 
    // Use forwarding.

    imp = (IMP)_objc_msgForward_impcache;
    cache_fill(cls, sel, imp, inst);

 done:
    runtimeLock.unlockRead();

    return imp;
}


先把注释部分解释一下:

1. 如果cache是YES,会从缓存中查找imp。如果我们之前响应过了,那么cache里面就会存的有
2. 判断这个类是不是已经被创建了,如果类没有被创建,就会把类实例化
3. 第一次调用当前类的话,会执行类的initialize的代码
4. 尝试获取这个类的缓存,包括下面的很多操作都会再次获取内存,主要还是因为OC是动态语言,我们执行imp查找的时候,会执行开锁解锁操作,解锁的时候是可以访问的
5. 如果没有从cache中查找,会从方法列表中获取method
6. 如果当前类没有,会从父类缓存以及方法列表中获取imp
7. 如果还没找到,会尝试动态方法决议(解析)
8. 如果还是没找到imp,并且动态方法解析也没有处理,就会进入消息转发阶段

然后解释代码部分,下面开始按照步骤序号逐层分析:

步骤1:

把代码剥离贴出来,如下:

// Optimistic cache lookup
    if (cache) {
        imp = cache_getImp(cls, sel);
        if (imp) return imp;
    }

点到cache_getImp里面后,我们发现这个函数不是汇编,但是也是类似于汇编进行快速查找的指令,但是在这里为什么还要加上这个逻辑呢?看过上一篇的内容后我们就明白了,在之前的流程中,汇编如果在缓存里面找不到IMP会调用lookUpImpOrForward这个函数回到C代码里面,此时要注意! 调用lookUpImpOrForward的时候,第四,第五,第六的参数传的是固定值!initialize 传的是YEScache传的是NOresolver传的是YES!明白了吧,步骤1里面的cache一定是NO,所以我们的逻辑此时并不会再次进入缓存查找!


IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
    return lookUpImpOrForward(cls, sel, obj, 
                              YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}

然后下面这部分就是检查类是否初始化和实现了,如果没有初始化和实现,就手动初始化和实现一下

//检查类是否初始化和实现
    if (!cls->isRealized()) {
        // Drop the read-lock and acquire the write-lock.
        // realizeClass() checks isRealized() again to prevent
        // a race while the lock is down.
        runtimeLock.unlockRead();
        runtimeLock.write();

        realizeClass(cls);

        runtimeLock.unlockWrite();
        runtimeLock.read();
    }

    if (initialize  &&  !cls->isInitialized()) {
        runtimeLock.unlockRead();
        _class_initialize (_class_getNonMetaClass(cls, inst));
        runtimeLock.read();
        // If sel == initialize, _class_initialize will send +initialize and 
        // then the messenger will send +initialize again after this 
        // procedure finishes. Of course, if this is not being called 
        // from the messenger then it won't happen. 2778172
    }

**步骤2:重点来了!!!方法查找部分 **

代码贴一下,我把这部分的注释也加到代码里面,便于分析理解:

retry:    
    runtimeLock.assertReading();
    
    //1、尝试从这个类的缓存里面获取imp
    // Try this class's cache.

    imp = cache_getImp(cls, sel);
    if (imp) goto done;

    //2、尝试从这个类的方法列表里面获取imp
    // Try this class's method lists.
    {
        Method meth = getMethodNoSuper_nolock(cls, sel);
        if (meth) {
            log_and_fill_cache(cls, meth->imp, sel, inst, cls);
            imp = meth->imp;
            goto done;
        }
    }
    
    //3、尝试从这个类父类的缓存和方法列表里面获取`imp`,如果当前父类找不到,会再往上找父类...以此类推,如果父类一直没有,就会一直找下去(最终会找到`NSObject`为止),如果最终还是找不到,就会尝试动态方法解析。在查找的过程中,会继续判断缓存,如果找到了`imp`,并且不在缓存里,还会调用方法把这个`imp`添加到缓存里面。这整个过程由最外层`retry`包裹,会递归进行多次查找!
    // Try superclass caches and method lists.
    {
        unsigned attempts = unreasonableClassCount();
        for (Class curClass = cls->superclass;
             curClass != nil;
             curClass = curClass->superclass)
        {
            // Halt if there is a cycle in the superclass chain.
            if (--attempts == 0) {
                _objc_fatal("Memory corruption in class list.");
            }
            
            // Superclass cache.
            imp = cache_getImp(curClass, sel);
            if (imp) {
                if (imp != (IMP)_objc_msgForward_impcache) {
                    // Found the method in a superclass. Cache it in this class.
                    log_and_fill_cache(cls, imp, sel, inst, curClass); //缓存里面没有的,添加到缓存里面,便于下次查找
                    goto done;
                }
                else {
                    // Found a forward:: entry in a superclass.
                    // Stop searching, but don't cache yet; call method 
                    // resolver for this class first.
                    break;
                }
            }
            
            // Superclass method list.
            Method meth = getMethodNoSuper_nolock(curClass, sel);
            if (meth) {
                log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
                imp = meth->imp;
                goto done;
            }
        }
    }


下面贴上从本类查找及父类递归查找的逻辑流程图:

流程图.png

如果步骤2递归查找到最后,还是找不到imp,就会尝试步骤3动态方法解析,动态方法解析如果还是找不到就会尝试步骤4的消息转发机制(比如会在打印台打印方法的错误信息),由于动态方法解析需要结合实例进行分析,我会在下一篇进行详细分析。

溪浣双鲤的技术摸爬滚打之路

相关文章

网友评论

      本文标题:Runtime源码分析系列(二)之方法查找C/C++递归部分

      本文链接:https://www.haomeiwen.com/subject/anordhtx.html