假设有reader1 和reader2,分别对一定数量病人的某一影像指标进行评分,现在想看一下这两位研究者评分的一致性,绘制Bland-Altman图是一种较为直观、简单的方式。python代码实现方法如下:
首先读入数据
folderPath = "/Users/.../ICC/features4ICC/"
data1 = pd.read_excel(os.path.join(folderPath,"reader1_ap.xlsx"))
data2 = pd.read_excel(os.path.join(folderPath,"reader2_ap.xlsx"))
data1.insert(0,"reader",np.ones(data1.shape[0]))
data2.insert(0,"reader",np.ones(data2.shape[0])*2)
data1.insert(0,"target",range(data1.shape[0]))
data2.insert(0,"target",range(data2.shape[0]))
data = pd.concat([data1,data2])
print(data)
input_data.png
Method 1
import numpy as np
import pingouin as pg
ax = pg.plot_blandaltman(data1['original_shape_Elongation'], data2['original_shape_Elongation'])
method_1.png
Method 2
# pip install pyCompare # for the first time
import pyCompare
pyCompare.blandAltman(data1['original_shape_Elongation'], data2['original_shape_Elongation'],
percentage=False,
title='Bland-Altman Plot 2',
limitOfAgreement=1.96)
method_2.png
pyCompare.blandAltman(data1['original_shape_Elongation'], data2['original_shape_Elongation'],
savePath='SavedFigure.tiff',
figureFormat='tiff')
Method 3
import matplotlib.pyplot as plt
import numpy as np
def bland_altman_plot(data1, data2, *args, **kwargs):
data1 = np.asarray(data1)
data2 = np.asarray(data2)
mean = np.mean([data1, data2], axis=0)
diff = data1 - data2 # Difference between data1 and data2
md = np.mean(diff) # Mean of the difference
sd = np.std(diff, axis=0) # Standard deviation of the difference
plt.scatter(mean, diff, *args, **kwargs)
plt.axhline(md, color='gray', linestyle='-')
plt.axhline(md + 1.96*sd, color='gray', linestyle='--')
plt.axhline(md - 1.96*sd, color='gray', linestyle='--')
from numpy.random import random
bland_altman_plot(data1['original_shape_Elongation'], data2['original_shape_Elongation'])
plt.title('Bland-Altman Plot 3')
plt.show()
method_3.png
参考资料:
Pingouin official documentation
Why & How to use the Bland-Altman plot for A/B testing | Python + code
Bland-Altman plot with confidence interval boundary in python
网友评论