美文网首页
CUDA yolov5后处理

CUDA yolov5后处理

作者: leon0514 | 来源:发表于2023-12-28 10:00 被阅读0次

yolov5模型输出结构

batch_size * box_num * (5 + num_classes)


image.png

表示batch_size为1, 框的数量为25200,类别为33

cuda 后处理

  1. 计算IoU
__device__ float box_iou(
        float aleft, float atop, float aright, float abottom, 
        float bleft, float btop, float bright, float bbottom
    )
{
    float cleft   = max(aleft, bleft);
    float ctop    = max(atop, btop);
    float cright  = min(aright, bright);
    float cbottom = min(abottom, bbottom);
    
    float c_area = max(cright - cleft, 0.0f) * max(cbottom - ctop, 0.0f);
    if(c_area == 0.0f)
        return 0.0f;
    
    float a_area = max(0.0f, aright - aleft) * max(0.0f, abottom - atop);
    float b_area = max(0.0f, bright - bleft) * max(0.0f, bbottom - btop);
    return c_area / (a_area + b_area - c_area);
}
  1. 还原原图坐标
    还原到原图坐标需要预处理做letter-box的时候使用warpaffine来出来的
__device__ void affine_project(float* matrix, float x, float y, float* ox, float* oy){
    *ox = matrix[0] * x + matrix[1] * y + matrix[2];
    *oy = matrix[3] * x + matrix[4] * y + matrix[5];
}
  1. 解码yolo输出
    predict 为模型输出的指针
    num_bboxes 模型框的数量
    num_classes 模型识别类别数量
    threshold 各个分类的阈值
    min_threshold 最小阈值
    invert_affine_matrix 还原原图坐标矩阵
    parray 存储识别结果数组,其中第一个元素为识别结果的数量,其余分别保存识别结果left,top,right,bottom,class_id,confidence,keep。其中keep表示最后是否保留该结果,用在nms时使用到
    max_objects 最大保存的结果数量。
__global__ void decode_kernel(
    float* predict, 
    int num_bboxes,
    int num_classes,
    float* threshold,
    float  min_threshold,
    float* invert_affine_matrix,
    float* parray,
    int max_objects)
{
    int position = blockDim.x * blockIdx.x + threadIdx.x;
    if (position >= num_bboxes) return;
    float* pitem     = predict + (5 + num_classes) * position;
    float objectness = pitem[4];
    if(objectness < min_threshold)
        return;
    float* class_confidence = pitem + 5;
    float confidence = *class_confidence++;
    int label  = 0;
    for(int i = 1; i < num_classes; ++i, ++class_confidence){
        if(*class_confidence > confidence){
            confidence = *class_confidence;
            label      = i;
        }
    }
    confidence *= objectness;
    if (confidence < threshold[label])
        return;
    int index = atomicAdd(parray, 1);
    if(index >= max_objects)
        return;
    
    float cx     = *pitem++;
    float cy     = *pitem++;
    float width  = *pitem++;
    float height = *pitem++;
    float left   = cx - width * 0.5f;
    float top    = cy - height * 0.5f;
    float right  = cx + width * 0.5f;
    float bottom = cy + height * 0.5f;

    affine_project(invert_affine_matrix, left,  top,    &left,  &top);
    affine_project(invert_affine_matrix, right, bottom, &right, &bottom);

    float* pout_item = parray + 1 + index * 7;
    *pout_item++ = left;
    *pout_item++ = top;
    *pout_item++ = right;
    *pout_item++ = bottom;
    *pout_item++ = confidence;
    *pout_item++ = label;
    *pout_item++ = 1;
}
  1. fast nms
__global__ void fast_nms_kernel(
    float* bboxes, 
    int max_objects, 
    float nms_threshold)
{
    int position = (blockDim.x * blockIdx.x + threadIdx.x);
    int count = min((int)*bboxes, max_objects);
    if (position >= count) 
        return;
    float* pcurrent = bboxes + 1 + position * 7;
    for(int i = 0; i < count; ++i)
    {
        float* pitem = bboxes + 1 + i * 7;
        // 不同类别或者同一个目标不做比较
        if(i == position || pcurrent[5] != pitem[5]) continue;
        if(pitem[4] >= pcurrent[4])
        {
            if(pitem[4] == pcurrent[4] && i < position)
                continue;
            float iou = box_iou(
                pcurrent[0], pcurrent[1], pcurrent[2], pcurrent[3],
                pitem[0],    pitem[1],    pitem[2],    pitem[3]
            );
            if(iou > nms_threshold){
                pcurrent[6] = 0;  // 1=keep, 0=ignore
                return;
            }
        }
    }
}
  1. decode函数
object::BoxArray CudaDecode::decode(
    float* preidct, 
    float* invert_affine_matrix,
    const float* confidence_threshold,
    float nms_threshold,
    int num_classes,
    int num_bboxes,
    int num_box_element,
    int max_objects)
{
    float min_confidence_threshold = 0.01;
    object::BoxArray result;

    cudaStream_t stream = nullptr;
    checkRuntime(cudaStreamCreate(&stream));

    auto block = num_bboxes > 256 ? 256 : num_bboxes;
    auto grid = (num_bboxes + block - 1) / block;
    float* device_confidence_threshold = nullptr;
    checkRuntime(cudaMalloc(&device_confidence_threshold, sizeof(float) * num_classes));

    float* device_invert_affine_matrix = nullptr;
    checkRuntime(cudaMalloc(&device_invert_affine_matrix, sizeof(float) * 6));

    float* predict_device = nullptr;
    float* output_device = nullptr;
    float* output_host = nullptr;
    checkRuntime(cudaMalloc(&predict_device, num_bboxes * (num_classes+5) * sizeof(float)));
    checkRuntime(cudaMalloc(&output_device, sizeof(float) + max_objects * num_box_element * sizeof(float)));
    // 在实际使用过程中,出现了申请的内存一直时同一块的情况,所以需要在申请后需要手动初始化为0,消除上一次识别的结果,不然会出现结果一直累加的情况
    checkRuntime(cudaMemsetAsync(output_device, 0, sizeof(float) + max_objects * num_box_element * sizeof(float), stream));
    checkRuntime(cudaMallocHost(&output_host, sizeof(float) + max_objects * num_box_element * sizeof(float)));
    checkRuntime(cudaMemcpyAsync(predict_device, preidct, num_bboxes * (num_classes+5) * sizeof(float), cudaMemcpyHostToDevice, stream));
    checkRuntime(cudaMemcpyAsync(device_invert_affine_matrix, invert_affine_matrix, 6 * sizeof(float), cudaMemcpyHostToDevice, stream));
    checkRuntime(cudaMemcpyAsync(device_confidence_threshold, confidence_threshold, num_classes * sizeof(float), cudaMemcpyHostToDevice, stream));
    decode_kernel<<<grid, block, 0, stream>>>(
        predict_device, num_bboxes, num_classes, 
        device_confidence_threshold, min_confidence_threshold,
        device_invert_affine_matrix, output_device, max_objects);
    checkRuntime(cudaStreamSynchronize(stream));
    block = max_objects > 256 ? 256 : max_objects;
    grid = (max_objects + block - 1) / block;
    fast_nms_kernel<<<grid, block, 0, stream>>>(output_device, max_objects, nms_threshold);
    checkRuntime(cudaStreamSynchronize(stream));
    checkRuntime(cudaMemcpyAsync(output_host, output_device, 
        sizeof(float) + max_objects * num_box_element * sizeof(float), 
        cudaMemcpyDeviceToHost, stream
    ));
    checkRuntime(cudaStreamSynchronize(stream));
    int num_boxes = std::min((int)output_host[0], max_objects);
    for(int i = 0; i < num_boxes; ++i)
    {
        float* ptr = output_host + 1 + num_box_element * i;
        int keep_flag = (int)ptr[6];
        if(keep_flag != 0)
        {
            result.emplace_back(
                ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], (int)ptr[5]
            );
        }
    }
    checkRuntime(cudaStreamDestroy(stream));
    checkRuntime(cudaFree(device_confidence_threshold));
    checkRuntime(cudaFree(device_invert_affine_matrix));
    checkRuntime(cudaFree(predict_device));
    checkRuntime(cudaFree(output_device));
    checkRuntime(cudaFreeHost(output_host));
    return result;
}

相关文章

网友评论

      本文标题:CUDA yolov5后处理

      本文链接:https://www.haomeiwen.com/subject/asmrndtx.html