1.什么是蛋白互作?
在转录调控相关的文献中,我们经常能够看到这样的蛋白质相互作用网络(proteinprotein interaction network,PPInetwork)。具体而言,这些相关的文献中首先通过RNA-seq、表达谱芯片或者蛋白质组分析等,找到了在不同分组样本间一系列的差异表达基因或蛋白。随后,通过STRING数据库(https://string-db.org/)检索了编码蛋白间可能的潜在相互作用,并构建了蛋白质相互作用网络表示出来,目的是描述这些基因或蛋白之间存在怎样的相互关系,例如物理接触、靶向调节等,最终阐述生物体中有意义的分子调节网络。
2.准备文件:基因家族的蛋白序列,这里以MATE基因为例
打开STRING

依次点击









3.•将Molecular Function、Biological Process、Cellular Component三个文件分别打开,将勾选出来的分别复制到一个新的表格中,新表格第一列填写对应的是这上述提到的三个名称,具体示例文件如下•将Molecular Function、Biological Process、Cellular Component三个文件分别打开,将勾选出来的分别复制到一个新的表格中,新表格第一列填写对应的是这上述提到的三个名称,具体示例文件如下

•然后将准备好的文件另存到桌面,文件命名为Module_GO

4.打开Rstudio,依次输入以下脚本
#setwd("C:/Users/86176/Desktop")
#library(grid)
#library(ggplot2)
#data <- read.table("Module_GO",header=T,sep="\t")
#data$Module<- factor(data$Module,levels = c("Cellular Component", "Molecular Function","Biological Process"))
#qplot(GO,number,colour = p_value, data = data,ylab="gene_number", xlab="GO enrichment",geom="jitter")+scale_colour_gradient2( low="red",mid="yellow", high="blue",midpoint=0.003)+theme_bw()+facet_wrap(~Module,scales="free_x",nrow=1)+theme(axis.text.x=element_text(angle=45,color="black",vjust=1,hjust=1),panel.grid.major.x = element_blank(),panel.grid.major.y = element_blank(),panel.grid.minor.y = element_blank(),strip.background = element_rect(fill = "#00CC33"))+theme(plot.margin=unit(c(30,0,20,20),"mm"))
5.KEGG
回到下载文件的那一步,下载KEGG Pathways,打开之后新建txt文本

打开,勾选中的这三列依次整理成下一个新表格

新建,命名为KEGG.txt

6.打开Rstudio,依次输入以下脚本
#setwd("C:/Users/86176/Desktop")
#library(grid)
#library(ggplot2)
#data <- read.table("KEGG.txt",header=T,sep="\t")
#ggplot(data = data, aes(x = Term, y= DEG_number,fill=Rich_factor,ylab="KEGG pathway"))+ geom_bar(stat="identity")+scale_fill_gradient2( low="blue",mid="yellow", high="red")+coord_flip()+theme_bw()
网友评论