Rxjava2源码浅析(二)

作者: Sp_WannaSing | 来源:发表于2017-03-18 23:55 被阅读240次

    上一篇文章:Rxjava2源码浅析(一)
    分析了最基础的一套流程,今天呢就略加一些常用的操作吧。

    使用范例
    上次我们在建立关系的时候就是这样光秃秃的一句话

    observable.subscribe(observer);
    

    这在平时使用的时候显然是不够用的,Rxjava的优势是什么?切换线程肯定要算一个啊,所以我们看一下下面这种使用方法。

    observable.subscribeOn(Schedulers.newThread())
              .observeOn(AndroidSchedulers.mainThread())
              .subscribe(observer);
                    
    

    这样就完成了在newThread中运行被观察者,在主线程中观察。下面就进入源码时间了~
    先从参数开始看起:

    public static Scheduler newThread() {
            return RxJavaPlugins.onNewThreadScheduler(NEW_THREAD);
        }
    

    然后又调用了

    @NonNull
        public static Scheduler onNewThreadScheduler(@NonNull Scheduler defaultScheduler) {
            Function<? super Scheduler, ? extends Scheduler> f = onNewThreadHandler;
            if (f == null) {
                return defaultScheduler;
            }
            return apply(f, defaultScheduler);
        }
    

    这里的onNewThreadHandler又是什么呢?

    static volatile Function<? super Scheduler, ? extends Scheduler> onNewThreadHandler;
    

    可以看到是一个类型转换的Funtion<>,暂时不用去管它,因为现在肯定是为空的,所以就会返回我们传进去的defaultScheduler也就是NEW_THREAD,这个是Schedulers内的一个变量

    static final Scheduler NEW_THREAD;
    

    这个NEW_THREAD又是什么呢?跟踪它在Schedulers内部的调用。

    NEW_THREAD = RxJavaPlugins.initNewThreadScheduler(new Callable<Scheduler>() {
                @Override
                public Scheduler call() throws Exception {
                    return NewThreadHolder.DEFAULT;
                }
            });
    

    发现了有个static字段内部对它进行了初始化操作。
    还是从参数开始分析,发现这是一个Callable对象,和Runable大同小异不过可以返回结果,这里就在call方法中返回了一个Scheduler对象NewThreadHolder.DEFAULT

    static final class NewThreadHolder {
            static final Scheduler DEFAULT = new NewThreadScheduler();
        }
    

    这里就将创建线程的任务从Schedulers移到了NewThreadScheduler

    static {
            int priority = Math.max(Thread.MIN_PRIORITY,        Math.min(Thread.MAX_PRIORITY,
            Integer.getInteger(KEY_NEWTHREAD_PRIORITY,Thread.NORM_PRIORITY)));
            THREAD_FACTORY = new RxThreadFactory(THREAD_NAME_PREFIX, priority);
     }
        
    private static final RxThreadFactory THREAD_FACTORY;
    
    public NewThreadScheduler() {
            this(THREAD_FACTORY);
    }
        
    public NewThreadScheduler(ThreadFactory threadFactory) {
            this.threadFactory = threadFactory;
    }
    

    我们看到NewThreadScheduler初始化中还包含着RxThreadFactory的初始化,至于它的作用到现在还不得而知,暂且搁置,回到主方法中。接着从从subscribeon开始分析:

    public final Observable<T> subscribeOn(Scheduler scheduler) {
            ObjectHelper.requireNonNull(scheduler, "scheduler is null");
            return RxJavaPlugins.onAssembly(new ObservableSubscribeOn<T>(this, scheduler));
        }
    

    上来第一行还是老样子先进行非空判断,然后第二行这个我们是不是也看着很眼熟呢?没错。。。

    public static <T> Observable<T> create(ObservableOnSubscribe<T> source) {
            ObjectHelper.requireNonNull(source, "source is null");
            return RxJavaPlugins.onAssembly(new ObservableCreate<T>(source));
        }
    

    这跟第一个步骤中的create长的简直一模一样。所以重点就来到了

    new ObservableSubscribeOn<T>(this, scheduler)
    

    该方法为:

    public ObservableSubscribeOn(ObservableSource<T> source, Scheduler scheduler) {
            super(source);
            this.scheduler = scheduler;
        }
    

    暂时没啥好说的。。。先跳过。。。
    subscribeon就先搁置一下,
    然后看observeron,参数就不分析了,和subscribeon的流程大同小异,唯一不同的就是其中是通过Looper.getMainLooper()来得到主线程的。后面有机会的话也会专门来写一篇文章记录一下自己关于Looper和Handler的线程和消息机制的学习。

    @CheckReturnValue
    @SchedulerSupport(SchedulerSupport.CUSTOM)
    public final Observable<T> observeOn(Scheduler scheduler) {
        return observeOn(scheduler, false, bufferSize());
    }
    

    这里的buffersize

    public static int bufferSize() {
            return Flowable.bufferSize();
    }
    
     public static int bufferSize() {
            return BUFFER_SIZE;
     }
    
    static final int BUFFER_SIZE;
    static {
            BUFFER_SIZE = Math.max(16, Integer.getInteger("rx2.buffer-size", 128));
        }
    

    可以看到这个buffersize就是一个缓冲区的大小,一个int类型的参数,不过和flowable牵扯在了一起,这个flowable也是Rxjava2的新特性--背压,这里先不多讲了,都放到后面的文章来说。主要来看这个observeon

    public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
            ObjectHelper.requireNonNull(scheduler, "scheduler is null");
            ObjectHelper.verifyPositive(bufferSize, "bufferSize");
            return RxJavaPlugins.onAssembly(new ObservableObserveOn<T>(this, scheduler, delayError, bufferSize));
    }
    

    它的前两行

    ObjectHelper.requireNonNull(scheduler, "scheduler is null");
    ObjectHelper.verifyPositive(bufferSize, "bufferSize");
    

    都是验证合理性的。第一行出现很多次就不用说了。第二行

    public static int verifyPositive(int value, String paramName) {
            if (value <= 0) {
                throw new IllegalArgumentException(paramName + " > 0 required but it was " + value);
            }
            return value;
        }
    

    就是说我们的buffersize一定要是一个正数,这也是合情合理且应该的。
    然后就又看到我们的老朋友了RxJavaPlugins.onAssembly。。。

    我们前面的分析也有了经验,所以这里会return 里面的参数 new ObservableObserveOn< T >(this, scheduler, delayError, bufferSize)向上转型为一个Observable,之前也分析过,
    ObservableObserveOn < T > 中会重写

    
        @Override
        protected void subscribeActual(Observer<? super T> observer) {
            if (scheduler instanceof TrampolineScheduler) {
                source.subscribe(observer);
            } else {
                Scheduler.Worker w = scheduler.createWorker();
    
                source.subscribe(new ObserveOnObserver<T>(observer, w, delayError, bufferSize));
            }
        }
    
    

    这里的scheduler.createWorker是AndroidScheduler.MainThread

    @Override
    public Worker createWorker() {
        return new HandlerWorker(handler);
    }
    

    而这个createWork()

    @Override
        public Worker createWorker() {
            return new HandlerWorker(handler);
        }
    
        private static final class HandlerWorker extends Worker {
            private final Handler handler;
    
            private volatile boolean disposed;
    
            HandlerWorker(Handler handler) {
                this.handler = handler;
            }
    
            @Override
            public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
                if (run == null) throw new NullPointerException("run == null");
                if (unit == null) throw new NullPointerException("unit == null");
    
                if (disposed) {
                    return Disposables.disposed();
                }
    
                run = RxJavaPlugins.onSchedule(run);
    
                ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
    
                Message message = Message.obtain(handler, scheduled);
                message.obj = this; // Used as token for batch disposal of this worker's runnables.
    
                handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));
    
                // Re-check disposed state for removing in case we were racing a call to dispose().
                if (disposed) {
                    handler.removeCallbacks(scheduled);
                    return Disposables.disposed();
                }
    
                return scheduled;
            }
    
            @Override
            public void dispose() {
                disposed = true;
                handler.removeCallbacksAndMessages(this /* token */);
            }
    
            @Override
            public boolean isDisposed() {
                return disposed;
            }
        }
    

    在new ObserveOnObserver< T >(observer, w, delayError, bufferSize)中,我们就选两个方法来看一下就可以了

    @Override
            public void onSubscribe(Disposable s) {
                if (DisposableHelper.validate(this.s, s)) {
                    this.s = s;
                    if (s instanceof QueueDisposable) {
                        @SuppressWarnings("unchecked")
                        QueueDisposable<T> qd = (QueueDisposable<T>) s;
    
                        int m = qd.requestFusion(QueueDisposable.ANY | QueueDisposable.BOUNDARY);
    
                        if (m == QueueDisposable.SYNC) {
                            sourceMode = m;
                            queue = qd;
                            done = true;
                            actual.onSubscribe(this);
                            schedule();
                            return;
                        }
                        if (m == QueueDisposable.ASYNC) {
                            sourceMode = m;
                            queue = qd;
                            actual.onSubscribe(this);
                            return;
                        }
                    }
    
                    queue = new SpscLinkedArrayQueue<T>(bufferSize);
    
                    actual.onSubscribe(this);
                }
            }
    
            @Override
            public void onNext(T t) {
                if (done) {
                    return;
                }
    
                if (sourceMode != QueueDisposable.ASYNC) {
                    queue.offer(t);
                }
                schedule();
            }
    

    其中的schedule方法比较重要

     void schedule() {
                if (getAndIncrement() == 0) {
                    worker.schedule(this);
                }
            }
    

    而这个schedule

    @NonNull
    public Disposable schedule(@NonNull Runnable run) {
            return schedule(run, 0L, TimeUnit.NANOSECONDS);
    }
    

    就调用了之前的HandlerScheduler里面的schedule方法

    @Override
            public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
                if (run == null) throw new NullPointerException("run == null");
                if (unit == null) throw new NullPointerException("unit == null");
    
                if (disposed) {
                    return Disposables.disposed();
                }
    
                run = RxJavaPlugins.onSchedule(run);
    
                ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
    
                Message message = Message.obtain(handler, scheduled);
                message.obj = this; // Used as token for batch disposal of this worker's runnables.
    
                handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));
    
                // Re-check disposed state for removing in case we were racing a call to dispose().
                if (disposed) {
                    handler.removeCallbacks(scheduled);
                    return Disposables.disposed();
                }
    
                return scheduled;
            }
    

    其中

    run = RxJavaPlugins.onSchedule(run);
    
    ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
    
    Message message = Message.obtain(handler, scheduled);
    message.obj = this; 
    // Used as token for batch disposal of this worker's runnables.
    
    handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));
    

    就完成了在MainThread中的观察,因为我们的handler就是刚刚new Handler()的时候传入了Looper.getMainLooper()。
    至于subscribeon是如何切换线程的。。还没看出来。。明天再说吧。。。

    相关文章

      网友评论

        本文标题:Rxjava2源码浅析(二)

        本文链接:https://www.haomeiwen.com/subject/axapnttx.html