美文网首页pytorch
跟着我60题PyTorch简易入门!

跟着我60题PyTorch简易入门!

作者: top_小酱油 | 来源:发表于2020-04-04 12:24 被阅读0次

    PyTorch是一个基于Python的库,提供了一个具有灵活易用的深度学习框架,是近年来最受欢迎的深度学习框架之一。

    点击此处查看线上运行效果:https://www.kesci.com/home/project/5e0038642823a10036ae9ebf

    1 初识PyTorch

    1.1 张量

    1.导入pytorch包

    import torch
    

    2.创建一个空的5x3张量

    x = torch.empty(5, 3)
    print(x)
    

    3.创建一个随机初始化的5x3张量

    x = torch.rand(5, 3)
    print(x)
    

    4.创建一个5x3的0张量,类型为long

    x = torch.zeros(5, 3, dtype=torch.long)
    print(x)
    

    5.直接从数组创建张量

    x = torch.tensor([5.5, 3])
    print(x)
    

    6.创建一个5x3的单位张量,类型为double

    x = torch.ones(5, 3, dtype=torch.double)
    print(x)
    

    7.从已有的张量创建相同维度的新张量,并且重新定义类型为float

    x = torch.randn_like(x, dtype=torch.float)
    print(x)
    

    8.打印一个张量的维度

    print(x.size())
    

    9.将两个张量相加

    y = torch.rand(5, 3)
    print(x + y)
    
    # 方法二
    # print(torch.add(x, y))
    
    # 方法三
    # result = torch.empty(5, 3)
    # torch.add(x, y, out=result)
    # print(result)
    
    # 方法四
    # y.add_(x)
    # print(y)
    

    10.取张量的第一列

    print(x[:, 1])
    

    11.将一个4x4的张量resize成一个一维张量

    x = torch.randn(4, 4)
    y = x.view(16)
    print(x.size(),y.size())
    

    12.将一个4x4的张量,resize成一个2x8的张量

    y = x.view(2, 8)
    print(x.size(),y.size())
    # 方法二
    z = x.view(-1, 8)
     # 确定一个维度,-1的维度会被自动计算print(x.size(),z.size())
    

    13.从张量中取出数字

    x = torch.randn(1)
    print(x)
    print(x.item())
    

    1.2 Numpy的操作

    14.将张量装换成numpy数组

    a = torch.ones(5)
    print(a)
    b = a.numpy()
    print(b)
    

    15.将张量+1,并观察上题中numpy数组的变化

    a.add_(1)
    print(a)
    print(b)
    

    16.从numpy数组创建张量

    import numpy as npa = np.ones(5)
    b = torch.from_numpy(a)
    print(a)
    print(b)
    

    17.将numpy数组+1并观察上题中张量的变化

    np.add(a, 1, out=a)
    print(a)
    print(b)
    

    2 自动微分

    2.1 张量的自动微分

    18.新建一个张量,并设置requires_grad=True

    x = torch.ones(2, 2, requires_grad=True)
    print(x)
    

    19.对张量进行任意操作(y = x + 2)

    y = x + 2
    print(y)
    print(y.grad_fn) # y就多了一个AddBackward
    

    20.再对y进行任意操作

    z = y * y * 3
    out = z.mean()
    
    print(z) # z多了MulBackward
    print(out) # out多了MeanBackward
    

    2.2 梯度

    21.对out进行反向传播

    out.backward()
    

    22.打印梯度d(out)/dx

    print(x.grad) #out=0.25*Σ3(x+2)^2
    

    23.创建一个结果为矢量的计算过程(y=x*2^n)

    x = torch.randn(3, requires_grad=True)
    
    y = x * 2
    while y.data.norm() < 1000:
        y = y * 2
    
    print(y)
    

    24.计算v = [0.``1, 1.0, 0.0001]处的梯度

    v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)y.backward(v)
    print(x.grad)
    

    25.关闭梯度的功能

    print(x.requires_grad)
    print((x ** 2).requires_grad)
    
    with torch.no_grad():
        print((x ** 2).requires_grad)
        
    # 方法二
    # print(x.requires_grad)
    # y = x.detach()
    # print(y.requires_grad)
    # print(x.eq(y).all())
    

    3 神经网络

    这部分会实现LeNet5,结构如下所示

    经典网络
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class Net(nn.Module):
    
        def __init__(self):
            super(Net, self).__init__()
            # 26.定义①的卷积层,输入为32x32的图像,卷积核大小5x5卷积核种类6
            self.conv1 = nn.Conv2d(3, 6, 5)
            # 27.定义③的卷积层,输入为前一层6个特征,卷积核大小5x5,卷积核种类16
            self.conv2 = nn.Conv2d(6, 16, 5)
            # 28.定义⑤的全链接层,输入为16*5*5,输出为120
            self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 6*6 from image dimension
            # 29.定义⑥的全连接层,输入为120,输出为84
            self.fc2 = nn.Linear(120, 84)
            # 30.定义⑥的全连接层,输入为84,输出为10
            self.fc3 = nn.Linear(84, 10)
    
        def forward(self, x):
            # 31.完成input-S2,先卷积+relu,再2x2下采样
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            # 32.完成S2-S4,先卷积+relu,再2x2下采样
            x = F.max_pool2d(F.relu(self.conv2(x)), 2) #卷积核方形时,可以只写一个维度
            # 33.将特征向量扁平成列向量
            x = x.view(-1, 16 * 5 * 5)
            # 34.使用fc1+relu
            x = F.relu(self.fc1(x))
            # 35.使用fc2+relu
            x = F.relu(self.fc2(x))
            # 36.使用fc3
            x = self.fc3(x)
            return x
    
    
    net = Net()
    print(net)
    

    37.打印网络的参数

    params = list(net.parameters())
    # print(params)
    print(len(params))
    

    38.打印某一层参数的形状

    print(params[0].size())
    

    39.随机输入一个向量,查看前向传播输出

    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)
    

    40.将梯度初始化

    net.zero_grad()
    

    41.随机一个梯度进行反向传播

    out.backward(torch.randn(1, 10))
    

    3.2 损失函数

    42.用自带的MSELoss()定义损失函数

    criterion = nn.MSELoss()
    

    43.随机一个真值,并用随机的输入计算损失

    target = torch.randn(10)  # 随机真值
    target = target.view(1, -1)  # 变成列向量
    
    output = net(input)  # 用随机输入计算输出
    
    loss = criterion(output, target)  # 计算损失
    print(loss)
    

    44.将梯度初始化,计算上一步中loss的反向传播

    net.zero_grad()
    print('conv1.bias.grad before backward')
    print(net.conv1.bias.grad)
    

    45.计算43中loss的反向传播

    loss.backward()
    print('conv1.bias.grad after backward')
    print(net.conv1.bias.grad)
    

    3.3 更新权重

    46.定义SGD优化器算法,学习率设置为0.01

    import torch.optim as optim
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    

    47.使用优化器更新权重

    optimizer.zero_grad()
    output = net(input)
    loss = criterion(output, target)
    loss.backward()
    
    # 更新权重
    optimizer.step()
    

    4 训练一个分类器

    4.1 读取CIFAR10数据,做标准化

    48.构造一个transform,将三通道(0,1)区间的数据转换成(-1,1)的数据

    import torchvision
    import torchvision.transforms as transforms
    
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    

    读取数据集

    trainset = cifar(root = './input/cifar10', segmentation='train', transforms=transform)
    testset = cifar(root = './input/cifar10', segmentation='test', transforms=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,shuffle=True, num_workers=2)
    testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,shuffle=False, num_workers=2)
    
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    

    4.2 建立网络

    这部分沿用前面的网络

    net2 = Net()
    

    4.3 定义损失函数和优化器

    49.定义交叉熵损失函数

    criterion2 = nn.CrossEntropyLoss()
    

    50.定义SGD优化器算法,学习率设置为0.001,momentum=0.9

    optimizer2 = optim.SGD(net2.parameters(), lr=0.001, momentum=0.9)
    

    4.4训练网络

    for epoch in range(2):
    
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # 获取X,y对
            inputs, labels = data
    
            # 51.初始化梯度
            optimizer2.zero_grad()
    
            # 52.前馈
            outputs = net2(inputs)
            # 53.计算损失
            loss = criterion2(outputs, labels)
            # 54.计算梯度
            loss.backward()
            # 55.更新权值
            optimizer2.step()
    
            # 每2000个数据打印平均代价函数值
            running_loss += loss.item()
            if i % 2000 == 1999:    # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
    
    print('Finished Training')
    

    4.5 使用模型预测

    取一些数据

    dataiter = iter(testloader)
    images, labels = dataiter.next()
    
    # print images
    imshow(torchvision.utils.make_grid(images))
    print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
    

    56.使用模型预测

    outputs = net2(images)
    
    _, predicted = torch.max(outputs, 1)
    
    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                                  for j in range(4)))
    

    57.在测试集上进行打分

    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = net2(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))
    

    4.6 存取模型

    58.保存训练好的模型

    PATH = './cifar_net.pth'torch.save(net.state_dict(), PATH)
    

    59.读取保存的模型

    pretrained_net = torch.load(PATH)
    

    60.加载模型

    net3 = Net()net3.load_state_dict(pretrained_net)
    

    相关文章

      网友评论

        本文标题:跟着我60题PyTorch简易入门!

        本文链接:https://www.haomeiwen.com/subject/axndphtx.html