scATAC分析实战(step3)

作者: Shaoqian_Ma | 来源:发表于2020-04-30 09:37 被阅读0次

    Step3-Run chromVAR on se

    Running chromVAR on single-cell summarized experiment

    准备工作

    chromVARmotifs包需要在Github上下载:https://github.com/GreenleafLab/chromVARmotifs

    PS:这是我见过的为数不多的还算比较稳定的包,一般都能下下来

    The TFBSTools package from Bioconductor is the only direct dependency; the PWMatrixList object from that package is used to store the motifs.

    这个包里存储了很多东西,包括motif Reference PWM,主要是人和鼠的motif数据:

    data("human_pwms_v1") #curated collection of human motifs from cisBP database
    data("mouse_pwms_v1") #curated collection of mouse motifs from cisBP database
    data("human_pwms_v2") #filtered collection of human motifs from cisBP database
    data("mouse_pwms_v2") #filtered collection of mouse motifs from cisBP database
    data("homer_pwms") #motifs from HOMER
    data("encode_pwms") #motifs from ENCODE
    

    函数说明

    matchMotifs

    可以实现peaks和motif数据库的比对,除此之外该函数还可以返回其他信息:每个peak有多少motif,每个peak的最大motif score(对应参数out = scores),每个匹配motif的具体位置(对应参数 out = positions),然后返回值out = matches or out = scores 都可以传给computeDeviations函数进行计算

    computeDeviations

    返回两个assay,第一个矩阵(可以通过deviations(dev) or assays(dev)$deviations访问)是每个样本(或细胞)的每个peaks可及性的bias corrected "deviation" 分数(原理是反映accessibility的分布,计算每个样本相对bulk样本平均accessibility的“偏离”分数,类似多重t检验的差异基因分析),考虑了GC偏倚和background peaks level。第二个矩阵(可通过(deviationScores(dev) or assays(deviations)$z)访问)给得是Z-score,这个分数可以一定程度反映“偏离”分数的置信度。

    dev <- computeDeviations(object = counts_filtered, annotations = motif_ix)
    

    computeVariability

    对上一步的结果进一步计算整体peaks的变异程度,应用了bootstrap方法

    The function computeVariability returns a data.frame that contains the variability (standard deviation of the z scores computed above across all cell/samples for a set of peaks), bootstrap confidence intervals for that variability (by resampling cells/samples), and a p-value for the variability being greater than the null hypothesis of 1.

    variability <- computeVariability(dev)
    
    plotVariability(variability, use_plotly = FALSE) 
    

    完整代码

    library(chromVAR)
    library(SummarizedExperiment)
    library(chromVARmotifs)
    library(motifmatchr)
    library(BiocParallel)
    library(BSgenome.Hsapiens.UCSC.hg19)
    register(SerialParam())
    set.seed(1)
    
    #-----------------
    # Read Inputs
    #-----------------
    genome <- BSgenome.Hsapiens.UCSC.hg19
    se <- readRDS("results/scATAC-Summarized-Experiment.rds") # single-cell summarized experiment rowRanges as peaks  上一步的se,union peaks的counts
    se <- addGCBias(se, genome = genome)#Computes GC content for peaks
    data("human_pwms_v1")#这个数据在chromVARmotifs这个包里
    matches <- matchMotifs(human_pwms_v1, rowRanges(se), genome = "BSgenome.Hsapiens.UCSC.hg19")#这个计算需要一段时间,比对union peaks和motif
    
    #compute deviations
    dev <- computeDeviations(object = se, annotations = matches)#Computes deviations in chromatin accessibility across sets of annotations  这个也很耗时
    
    #compute variability
    metadata(dev)$Variability <- computeVariability(dev)
    
    #add se
    metadata(dev)$SummarizedExperiment <- se
    
    #add matches
    metadata(dev)$motifMatches <- matches
    
    saveRDS(dev, "results/chromVAR-Summarized-Experiment.rds")
    

    引用:http://www.bioconductor.org/packages/release/bioc/vignettes/chromVAR/inst/doc/Introduction.html

    看一下dev的结构:每一行应该就是motif TFgene

    dev
    class: chromVARDeviations 
    dim: 1764 3770 
    metadata(3): Variability SummarizedExperiment motifMatches
    assays(2): deviations z
    rownames(1764): ENSG00000008196_LINE2_TFAP2B_D_N1
      ENSG00000008196_LINE3_TFAP2B_D_N1 ...
      ENSG00000122145_LINE20002_TBX22_I_N1
      ENSG00000122145_LINE20003_TBX22_I_N1
    rowData names(3): name fractionMatches fractionBackgroundOverlap
    colnames(3770): PBMC#GAGGTCCGTCTCTGCT-1 PBMC#CCCTGATGTCTTAGCA-1 ...
      PBMC#GGAACTTCATTTGGCA-1 PBMC#AAACTGCCATTCCCGT-1
    colData names(5): FRIP uniqueFrags Clusters TSNE1 TSNE2
    

    引用:[https://doi.org/10.1038/s41587-019-0206-z]

    相关文章

      网友评论

        本文标题:scATAC分析实战(step3)

        本文链接:https://www.haomeiwen.com/subject/bggawhtx.html